全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人工智能技术在肺结节影像学诊断中的应用:进展、挑战与展望
Application of Artificial Intelligence Technology in Imaging Diagnosis of Pulmonary Nodules: Progress, Challenges and Prospects

DOI: 10.12677/jcpm.2024.34266, PP. 1896-1902

Keywords: 人工智能,深度学习,肺结节,影像学诊断
Artificial Intelligence
, Deep Learning, Pulmonary Nodules, Imaging Diagnosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

肺结节是肺癌的重要征兆,早期诊断对提高患者生存率至关重要。传统的肺结节诊断方法存在一定的局限性,而人工智能技术的快速发展为解决这一问题提供了新的思路。本文综述了人工智能技术在肺结节影像学诊断中的应用进展,重点介绍了基于深度学习的肺结节检测、分类和恶性程度预测方法。同时,本文分析了当前人工智能在肺结节诊断中面临的挑战,包括数据标注不足、模型泛化能力有限和可解释性不足等问题。最后,本文展望了人工智能在肺结节影像学诊断中的未来发展方向,如多模态信息融合、数据共享与联邦学习以及知识引导的深度学习等,并强调了进一步加强医工交叉合作、构建基础数据库、突破关键技术瓶颈的重要性。
Lung nodules are an important sign of lung cancer, and early diagnosis is crucial to improve the survival rate of patients. Traditional methods for diagnosing pulmonary nodules have some limitations, but the rapid development of artificial intelligence technology provides a new way to solve this problem. In this paper, the application of artificial intelligence technology in the imaging diagnosis of lung nodules is reviewed, with emphasis on the detection, classification and malignant degree prediction methods of lung nodules based on deep learning. At the same time, this paper analyzes the current challenges faced by artificial intelligence in lung nodule diagnosis, including insufficient data annotation, limited model generalization ability and insufficient interpretability. Finally, this paper looks forward to the future development direction of artificial intelligence in the imaging diagnosis of pulmonary nodules, such as multi-modal information fusion, data sharing and federated learning, and knowledge-guided deep learning, and emphasizes the importance of further strengthening cross-medical cooperation, building basic databases, and breaking through key technical bottlenecks.

References

[1]  刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-13.
[2]  郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231.
[3]  National Lung Screening Trial Research Team (2011) Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. New England Journal of Medicine, 365, 395-409.
https://doi.org/10.1056/nejmoa1102873
[4]  Rubin, G.D., Lyo, J.K., Paik, D.S., Sherbondy, A.J., Chow, L.C., Leung, A.N., et al. (2005) Pulmonary Nodules on Multi-Detector Row CT Scans: Performance Comparison of Radiologists and Computer-Aided Detection. Radiology, 234, 274-283.
https://doi.org/10.1148/radiol.2341040589
[5]  Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, Vol. 25, 1097-1105.
[6]  Shen, D., Wu, G. and Suk, H. (2017) Deep Learning in Medical Image Analysis. Annual Review of Biomedical Engineering, 19, 221-248.
https://doi.org/10.1146/annurev-bioeng-071516-044442
[7]  Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. (2017) Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature, 542, 115-118.
https://doi.org/10.1038/nature21056
[8]  Setio, A.A.A., Traverso, A., de Bel, T., Berens, M.S.N., Bogaard, C.v.d., Cerello, P., et al. (2017) Validation, Comparison, and Combination of Algorithms for Automatic Detection of Pulmonary Nodules in Computed Tomography Images: The LUNA16 Challenge. Medical Image Analysis, 42, 1-13.
https://doi.org/10.1016/j.media.2017.06.015
[9]  Dou, Q., Chen, H., Yu, L., Qin, J. and Heng, P. (2017) Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection. IEEE Transactions on Biomedical Engineering, 64, 1558-1567.
https://doi.org/10.1109/tbme.2016.2613502
[10]  Zhu, W., Liu, C., Fan, W. and Xie, X. (2018) DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, 12-15 March 2018, 673-681.
https://doi.org/10.1109/wacv.2018.00079
[11]  Shen, W., Zhou, M., Yang, F., Yu, D., Dong, D., Yang, C., et al. (2017) Multi-Crop Convolutional Neural Networks for Lung Nodule Malignancy Suspiciousness Classification. Pattern Recognition, 61, 663-673.
https://doi.org/10.1016/j.patcog.2016.05.029
[12]  Xie, Y., Xia, Y., Zhang, J., Song, Y., Feng, D., Fulham, M., et al. (2019) Knowledge-Based Collaborative Deep Learning for Benign-Malignant Lung Nodule Classification on Chest CT. IEEE Transactions on Medical Imaging, 38, 991-1004.
https://doi.org/10.1109/tmi.2018.2876510
[13]  Han, G., Liu, X., Zheng, G., Wang, M. and Huang, S. (2018) Automatic Recognition of 3D GGO CT Imaging Signs through the Fusion of Hybrid Resampling and Layer-Wise Fine-Tuning CNNs. Medical & Biological Engineering & Computing, 56, 2201-2212.
https://doi.org/10.1007/s11517-018-1850-z
[14]  Wang, S., Zhou, M., Gevaert, O., Tang, Z., Dong, D., Liu, Z., et al. (2017) A Multi-View Deep Convolutional Neural Networks for Lung Nodule Segmentation. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, 11-15 July 2017, 1752-1755.
https://doi.org/10.1109/embc.2017.8037182
[15]  Shen, S., Han, S.X., Aberle, D.R., Bui, A.A. and Hsu, W. (2019) An Interpretable Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malignancy Classification. Expert Systems with Applications, 128, 84-95.
https://doi.org/10.1016/j.eswa.2019.01.048
[16]  Zhao, X., Liu, L., Qi, S., Teng, Y., Li, J. and Qian, W. (2018) Agile Convolutional Neural Network for Pulmonary Nodule Classification Using CT Images. International Journal of Computer Assisted Radiology and Surgery, 13, 585-595.
https://doi.org/10.1007/s11548-017-1696-0
[17]  Zhang, J., Xia, Y., Cui, H. and Zhang, Y. (2018) Pulmonary Nodule Detection in Medical Images: A Survey. Biomedical Signal Processing and Control, 43, 138-147.
https://doi.org/10.1016/j.bspc.2018.01.011
[18]  Huang, P., Park, S., Yan, R., Lee, J., Chu, L.C., Lin, C.T., et al. (2018) Added Value of Computer-Aided CT Image Features for Early Lung Cancer Diagnosis with Small Pulmonary Nodules: A Matched Case-Control Study. Radiology, 286, 286-295.
https://doi.org/10.1148/radiol.2017162725
[19]  Gao, M., Bagci, U., Lu, L., Wu, A., Buty, M., Shin, H., et al. (2016) Holistic Classification of CT Attenuation Patterns for Interstitial Lung Diseases via Deep Convolutional Neural Networks. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 6, 1-6.
https://doi.org/10.1080/21681163.2015.1124249
[20]  Cui, Z., Chen, W. and Chen, Y. (2016) Multi-Scale Convolutional Neural Networks for Time Series Classification.
[21]  Yang, Q., Liu, Y., Chen, T. and Tong, Y. (2019) Federated Machine Learning: Concept and Applications. ACM Transactions on Intelligent Systems and Technology, 10, 1-19.
https://doi.org/10.1145/3298981
[22]  侍江烽, 冯宝, 陈业航, 等. 基于自适应聚合权重联邦学习的肺结节CT图像分类[J]. 激光与光电子学进展, 2023, 60(22): 86-96.
[23]  Chen, Y., Qin, X., Wang, J., Yu, C. and Gao, W. (2020) FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare. IEEE Intelligent Systems, 35, 83-93.
https://doi.org/10.1109/mis.2020.2988604
[24]  Zhang, Z., Cui, P. and Zhu, W. (2022) Deep Learning on Graphs: A Survey. IEEE Transactions on Knowledge and Data Engineering, 34, 249-270.
https://doi.org/10.1109/tkde.2020.2981333

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133