|
ICU重症肺炎患者病原体检测技术的研究进展
|
Abstract:
重症肺炎(Severe pneumonia, SP)是一种在重症监护病房(Intensive care unit, ICU)中常见的危急呼吸系统疾病。患者病情可以迅速恶化,发展为全身炎症反应综合征(systemic inflammatory response syndrome, SIRS),甚至发展为感染性休克,导致血液循环严重衰竭和多脏器功能障碍综合征(multiple organ dysfunction syndrome, MODS),根据相关研究,重症肺炎的患者通常需要入住ICU进行全面监护和治疗,因为其死亡率较高,尤其是在老年人和有基础疾病的患者中更为显著。医务人员需要采取积极的治疗措施,包括抗生素治疗、呼吸支持、液体复苏等,以控制感染、减轻炎症反应,并防止并发症的发生。其中,病原菌的检测及抗生素的应用对于提高患者的生存率和改善预后至关重要。目前,重症肺炎的病原体正在发生变化,传统检测方法主要依赖标本染色、培养及生化反应等。尽管微生物培养被视为感染病原体检测的金标准,但对一些非典型病原菌和病毒的检测仍然耗时且难度较大,给临床诊断和治疗带来了挑战。随着各类检测技术的不断发展,临床上重症肺炎病原体的检测阳性率显著上升。本文旨在对ICU重症肺炎患者的病原体及其检测方法的最新进展进行综述。
Severe pneumonia (SP) is a common acute and critical respiratory disease in intensive care unit (ICU), which can rapidly develop from local infection to systemic inflammatory response syndrome (SIRS), It can even cause severe complications such as septic shock and multiple organ dysfunction syndrome (MODS). According to relevant research, patients with severe pneumonia usually need to be admitted to the ICU for general care and treatment because of its high mortality, especially in the elderly and patients with underlying diseases more significant. Medical personnel need to take the initiative treatment measures, including antibiotic treatment, respiratory support, fluid resuscitation, etc., to control infection, reduce inflammatory reaction, and prevent complications of the Environmental Protection Department. The detection of pathogenic bacteria and the application of antibiotics are very important to improve the survival rate and prognosis of patients. Currently, severe pneumonia traditional detection methods mainly depend on specimen staining, culture and biochemical reaction, etc. Although microbial culture is regarded as the gold standard for the detection of infectious pathogens, the detection of some atypical pathogens and viruses is still time-consuming and difficult, posing challenges to clinical diagnosis and treatment. With the development of various detection techniques, the positive rate of pathogens in severe pneumonia increased significantly. This article aims to provide a review of the recent progress of pathogens and their detection methods in ICU patients with severe pneumonia.
[1] | Gandolfo, C., Bonfiglio, M., Spinetto, G., Ferraioli, G., Barlascini, C., Nicolini, A., et al. (2022) Pneumomediastinum Associated with Severe Pneumonia Related to COVID-19: Diagnosis and Management. Minerva Medica, 112, 779-785. https://doi.org/10.23736/s0026-4806.21.07585-6 |
[2] | 罗松平, 刘单霞, 韦兆吉, 等. 重症肺炎行有创机械通气患者ICU死亡的多因素分析及风险模型建立[J]. 中国急救医学, 2023, 43(4): 268-272. |
[3] | Niederman, M.S. and Torres, A. (2022) Severe Community-Acquired Pneumonia. European Respiratory Review, 31, Article 220123. https://doi.org/10.1183/16000617.0123-2022 |
[4] | Liu, Y., Zhang, Y., Xu, Q., Qiu, Y., Lu, Q., Wang, T., et al. (2023) Infection and Co-Infection Patterns of Community-Acquired Pneumonia in Patients of Different Ages in China from 2009 to 2020: A National Surveillance Study. The Lancet Microbe, 4, e330-e339. https://doi.org/10.1016/s2666-5247(23)00031-9 |
[5] | Kern, W.V. and Rieg, S. (2020) Burden of Bacterial Bloodstream Infection—A Brief Update on Epidemiology and Significance of Multidrug-Resistant Pathogens. Clinical Microbiology and Infection, 26, 151-157. https://doi.org/10.1016/j.cmi.2019.10.031 |
[6] | Huo, Y., Zhang, K., Li, B. and Hu, Z. (2022) Patients with Severe Novel Coronavirus Pneumonia: From Treatment to Prevention. Asian Journal of Surgery, 45, 814-815. https://doi.org/10.1016/j.asjsur.2021.12.004 |
[7] | 赵旭, 袁成凤. 胸腺法新联合HFNC治疗对老年重症肺炎并呼吸衰竭患者血气指标和免疫功能的影响[J]. 中国医学创新, 2024, 21(18): 63-67. |
[8] | 高志, 孙照祝. 重症肺炎的呼吸支持治疗进展[J]. 中国医刊, 2021, 56(9): 946-948. |
[9] | Zelus, C.S., Blaha, M.A., Samson, K.K., Kalil, A.C., Van Schooneveld, T.C., Marcelin, J.R., et al. (2022) Lower Respiratory Tract Coinfection in the ICU: Prevalence and Clinical Significance of Coinfection Detected via Microbiological Analysis of Bronchoalveolar Lavage Fluid with a Comparison of Invasive Methodologies. Critical Care Explorations, 4, e0708. https://doi.org/10.1097/cce.0000000000000708 |
[10] | Moreau, A., Martin-Loeches, I., Povoa, P., Salluh, J., Rodriguez, A., Thille, A.W., et al. (2018) Impact of Immunosuppression on Incidence, Aetiology and Outcome of Ventilator-Associated Lower Respiratory Tract Infections. European Respiratory Journal, 51, Article 1701656. https://doi.org/10.1183/13993003.01656-2017 |
[11] | 秦京宁, 初艳慧, 孙景异, 等. 北京市西城区1247例重症肺炎病例呼吸道病原谱分析[J]. 公共卫生与预防医学, 2022, 33(2): 65-68. |
[12] | 谢小馨, 彭银霜, 何金洪, 等. 重症肺炎患者肺部感染的病原学特征及耐药性分析[J]. 中国病原生物学杂志, 2024, 19(2): 217-220. |
[13] | 叶青, 王笑灵, 田国保, 等. 儿童及成人重症社区获得性肺炎病原学及流行病学研究[J]. 临床和实验医学杂志, 2019, 18(11): 1169-1172. |
[14] | Majumder, J. and Minko, T. (2021) Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. The AAPS Journal, 23, Article No. 14. https://doi.org/10.1208/s12248-020-00532-2 |
[15] | Harrison, A.G., Lin, T. and Wang, P. (2020) Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends in Immunology, 41, 1100-1115. https://doi.org/10.1016/j.it.2020.10.004 |
[16] | Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020) Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet, 395, 497-506. https://doi.org/10.1016/s0140-6736(20)30183-5 |
[17] | Mizrahi, B., Shilo, S., Rossman, H., Kalkstein, N., Marcus, K., Barer, Y., et al. (2020) Longitudinal Symptom Dynamics of COVID-19 Infection. Nature Communications, 11, Article No. 6208. https://doi.org/10.1038/s41467-020-20053-y |
[18] | Subramanian, A., Nirantharakumar, K., Hughes, S., Myles, P., Williams, T., Gokhale, K.M., et al. (2022) Symptoms and Risk Factors for Long COVID in Non-Hospitalized Adults. Nature Medicine, 28, 1706-1714. https://doi.org/10.1038/s41591-022-01909-w |
[19] | Xie, L., Zhang, B., Zhou, J., Huang, H., Zeng, S., Liu, Q., et al. (2018) Human Adenovirus Load in Respiratory Tract Secretions Are Predictors for Disease Severity in Children with Human Adenovirus Pneumonia. Virology Journal, 15, Article No. 123. https://doi.org/10.1186/s12985-018-1037-0 |
[20] | Otto, W.R., Lamson, D.M., Gonzalez, G., Weinberg, G.A., Pecora, N.D., Fisher, B.T., et al. (2021) Fatal Neonatal Sepsis Associated with Human Adenovirus Type 56 Infection: Genomic Analysis of Three Recent Cases Detected in the United States. Viruses, 13, Article 1105. https://doi.org/10.3390/v13061105 |
[21] | Jeannoël, M., Lina, G., Rasigade, J.P., Lina, B., Morfin, F. and Casalegno, J.S. (2018) Microorganisms Associated with Respiratory Syncytial Virus Pneumonia in the Adult Population. European Journal of Clinical Microbiology & Infectious Diseases, 38, 157-160. https://doi.org/10.1007/s10096-018-3407-3 |
[22] | Pickens, C., Wunderink, R.G., Qi, C., Mopuru, H., Donnelly, H., Powell, K., et al. (2020) A Multiplex Polymerase Chain Reaction Assay for Antibiotic Stewardship in Suspected Pneumonia. Diagnostic Microbiology and Infectious Disease, 98, Article 115179. https://doi.org/10.1016/j.diagmicrobio.2020.115179 |
[23] | Schauwvlieghe, A.F.A.D., Rijnders, B.J.A., Philips, N., Verwijs, R., Vanderbeke, L., Van Tienen, C., et al. (2018) Invasive Aspergillosis in Patients Admitted to the Intensive Care Unit with Severe Influenza: A Retrospective Cohort Study. The Lancet Respiratory Medicine, 6, 782-792. https://doi.org/10.1016/s2213-2600(18)30274-1 |
[24] | 丁新华, 朱利勇, 章卉, 史忠洋. 748例重症监护患者真菌检出情况及其影响因素分析[J]. 实用预防医学, 2023, 30(2): 233-236. |
[25] | Koulenti, D., Papathanakos, G. and Blot, S. (2023) Invasive Pulmonary Aspergillosis in the ICU: Tale of a Broadening Risk Profile. Current Opinion in Critical Care, 29, 463-469. https://doi.org/10.1097/mcc.0000000000001070 |
[26] | Wu, D., Wang, W., Xun, Q., Wang, H., Liu, J., Zhong, Z., et al. (2022) Metagenomic Next-Generation Sequencing Indicates More Precise Pathogens in Patients with Pulmonary Infection: A Retrospective Study. Frontiers in Cellular and Infection Microbiology, 12, Article 977591. https://doi.org/10.3389/fcimb.2022.977591 |
[27] | Kim, E., Yong, S., Sung, M., Woo, A., Park, Y., Kim, H., et al. (2023) Aspergillus Galactomannan Titer as a Diagnostic Marker of Invasive Pulmonary Aspergillosis in Lung Transplant Recipients: A Single-Center Retrospective Cohort Study. Journal of Fungi, 9, Article 527. https://doi.org/10.3390/jof9050527 |
[28] | 蒋露晰, 任红宇, 周海健, 等. 社区获得性肺炎病原体检测方法研究进展[J]. 中华流行病学杂志, 2016, 37(7): 1051-1054. |
[29] | 李慧. 不同取痰方式病原菌培养诊断下呼吸道感染的临床对比[J]. 内蒙古医学杂志, 2020, 52(6): 704-705. |
[30] | Wälscher, J. and Gompelmann, D. (2016) Bronchoskopie. Deutsche Medizinische Wochenschrift, 141, 1236-1238. https://doi.org/10.1055/s-0042-111420 |
[31] | 邓忠天, 邹兰科, 陈丽娜. 支气管镜在下呼吸道感染病原学诊断中的应用价值[J]. 微创医学, 2021, 16(3): 423-425. |
[32] | Sircar, M., Ranjan, P., Gupta, R., Jha, O.K., Gupta, A., Kaur, R., et al. (2016) Impact of Bronchoalveolar Lavage Multiplex Polymerase Chain Reaction on Microbiological Yield and Therapeutic Decisions in Severe Pneumonia in Intensive Care Unit. Journal of Critical Care, 31, 227-232. https://doi.org/10.1016/j.jcrc.2015.10.012 |
[33] | 叶寅杰, 董妮珊, 陆俊杰. 实时荧光定量PCR检测肺泡灌洗液中白细胞吞噬细菌种类对ICU内HAP或VAP的诊断价值[J]. 江苏医药, 2022, 48(3): 269-273. |
[34] | 母润红, 常明珠, 崔云鹤, 等. 血清中新型冠状病毒抗体检测技术的研究进展[J]. 吉林医药学院学报, 2024, 45(3): 220-225. |
[35] | 杨文洪, 俞彬倩. 小儿上呼吸道感染微生物检验中免疫荧光法的作用[J]. 中国城乡企业卫生, 2023, 38(6): 143-145. |
[36] | 顾伟忠, 舒艳, 赵云, 等. 采用直接免疫荧光法对呼吸道分泌物中多种呼吸道病毒抗原检测的价值及临床应用[C]//浙江省病理技术学术大会暨第六届长三角病理技术学术会议论文汇编. 2019: 254-256. |
[37] | 李晓光, 陈静, 王伟, 等. 新型快速流行性感冒病毒抗原检测方法免疫荧光法在流行性感冒筛查中的应用价值研究[J]. 中国全科医学, 2020, 23(36): 4651-4655. |
[38] | Lv, M., Zhu, C., Zhu, C., Yao, J., Xie, L., Zhang, C., et al. (2023) Clinical Values of Metagenomic Next-Generation Sequencing in Patients with Severe Pneumonia: A Systematic Review and Meta-Analysis. Frontiers in Cellular and Infection Microbiology, 13, Article 1106859. https://doi.org/10.3389/fcimb.2023.1106859 |
[39] | 何邦立, 林亚发, 符名勇, 王建平, 吴毓磊. 宏基因二代测序技术检测不明原因肺部感染病原体的临床应用价值[J]. 中华医院感染学杂志, 2023, 33(7): 1001-1005. |
[40] | Jin, X., Li, J., Shao, M., Lv, X., Ji, N., Zhu, Y., et al. (2022) Improving Suspected Pulmonary Infection Diagnosis by Bronchoalveolar Lavage Fluid Metagenomic Next-Generation Sequencing: A Multicenter Retrospective Study. Microbiology Spectrum, 10, e02473-21. https://doi.org/10.1128/spectrum.02473-21 |
[41] | Grothen, D.C., Zach, S.J. and Davis, P.H. (2017) Detection of Intestinal Pathogens in River, Shore, and Drinking Water in Lima, Peru. Journal of Genomics, 5, 4-11. https://doi.org/10.7150/jgen.18378 |
[42] | 高扬, 董泽丰, 雅雪蓉, 等. 病原体多重PCR检测技术研究进展[J]. 江苏预防医学, 2024, 35(2): 243-247. |
[43] | Wagner, K., Springer, B., Imkamp, F., Opota, O., Greub, G. and Keller, P.M. (2018) Detection of Respiratory Bacterial Pathogens Causing Atypical Pneumonia by Multiplex Lightmix® RT-PCR. International Journal of Medical Microbiology, 308, 317-323. https://doi.org/10.1016/j.ijmm.2018.01.010 |
[44] | Nyaruaba, R., Mwaliko, C., Dobnik, D., Neužil, P., Amoth, P., Mwau, M., et al. (2022) Digital PCR Applications in the SARS-CoV-2/COVID-19 Era: A Roadmap for Future Outbreaks. Clinical Microbiology Reviews, 35, e00168-21. https://doi.org/10.1128/cmr.00168-21 |
[45] | Abram, T.J., Cherukury, H., Ou, C., Vu, T., Toledano, M., Li, Y., et al. (2020) Rapid Bacterial Detection and Antibiotic Susceptibility Testing in Whole Blood Using One-Step, High Throughput Blood Digital PCR. Lab on a Chip, 20, 477-489. https://doi.org/10.1039/c9lc01212e |
[46] | Yoshimura, J., Yamakawa, K., Ohta, Y., Nakamura, K., Hashimoto, H., Kawada, M., et al. (2022) Effect of Gram Stain-Guided Initial Antibiotic Therapy on Clinical Response in Patients with Ventilator-Associated Pneumonia. JAMA Network Open, 5, e226136. https://doi.org/10.1001/jamanetworkopen.2022.6136 |
[47] | 杨幸乐, 夏婷婷, 左春磊, 等. 微生物学快速现场评价在重症肺炎中的应用价值[J]. 实用医学杂志, 2023, 39(22): 2964-2968. |