全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于孟德尔随机化探讨酪氨酸水平与男性不育症的因果关系
Exploring the Causal Relationship between Tyrosine Levels and Male Infertility Based on Mendelian Randomization

DOI: 10.12677/acm.2024.14123158, PP. 845-852

Keywords: 男性不育症,酪氨酸,孟德尔随机化
Male Infertility
, Tyrosine, Mendelian Randomization

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究旨在通过双样本孟德尔随机化分析,评估酪氨酸水平(tyrosine)对男性不育症(male infertility)的因果关系。采用基因组范围关联研究(GWAS)数据,筛选与酪氨酸水平相关的单核苷酸多态性(SNP),并应用逆方差加权法(IVW)、MR-Egger回归、加权中位数法等多种方法进行分析。结果显示,酪氨酸水平每增加一个标准差,男性不育症的优势比(OR)为0.507 (95% CI: ?1.203~?0.154, P < 0.05),表明较高的酪氨酸水平可能与降低男性不育症风险显著相关。敏感性分析结果进一步验证了主要分析的稳健性,未发现显著的异质性和水平多效性,表明所选工具变量适合用于因果推断。研究结果提示酪氨酸可能在男性生殖健康中发挥重要作用,为未来关于不育症的预防和治疗研究提供了新方向。
This study aims to assess the causal relationship between tyrosine levels and male infertility through two-sample Mendelian randomization analysis. Using genome-wide association study (GWAS) data, we identified single nucleotide polymorphisms (SNPs) associated with tyrosine levels and applied various methods, including inverse variance weighting (IVW), MR-Egger regression, and weighted median approaches for analysis. The results indicate that for each standard deviation increase in tyrosine levels, the odds ratio (OR) for male infertility is 0.507 (95% CI: ?1.203~?0.154, P < 0.05), suggesting that higher tyrosine levels may be significantly associated with a reduced risk of male infertility. Sensitivity analysis further confirmed the robustness of the primary analysis, showing no significant heterogeneity or horizontal pleiotropy, indicating that the selected instrumental variables are suitable for causal inference. These findings suggest that tyrosine may play an important role in male reproductive health and provide new directions for future research on infertility prevention and treatment.

References

[1]  Eisenberg, M.L., Esteves, S.C., Lamb, D.J., Hotaling, J.M., Giwercman, A., Hwang, K., et al. (2023) Male Infertility. Nature Reviews Disease Primers, 9, Article No. 49.
https://doi.org/10.1038/s41572-023-00459-w
[2]  Service, C.A., Puri, D., Al Azzawi, S., Hsieh, T. and Patel, D.P. (2023) The Impact of Obesity and Metabolic Health on Male Fertility: A Systematic Review. Fertility and Sterility, 120, 1098-1111.
https://doi.org/10.1016/j.fertnstert.2023.10.017
[3]  Hunter, T. (2014) The Genesis of Tyrosine Phosphorylation. Cold Spring Harbor Perspectives in Biology, 6, a020644.
https://doi.org/10.1101/cshperspect.a020644
[4]  Anonymous (1974) Tyrosine Metabolism and Toxicity. Nutrition Reviews, 32, 219-220.
https://doi.org/10.1111/j.1753-4887.1974.tb00968.x
[5]  Seshagiri, P.B., Mariappa, D. and Aladakatti, R.H. (2007) Tyrosine Phosphorylated Proteins in Mammalian Spermatozoa: Molecular and Functional Aspects. Society of Reproduction and Fertility Supplement, 63, 313-325.
[6]  González-Fernández, L., Macías-García, B., Velez, I.C., Varner, D.D. and Hinrichs, K. (2012) Calcium-Calmodulin and pH Regulate Protein Tyrosine Phosphorylation in Stallion Sperm. Reproduction, 144, 411-422.
https://doi.org/10.1530/rep-12-0067
[7]  Buffone, M.G., Calamera, J.C., Verstraeten, S.V. and Doncel, G.F. (2005) Capacitation-Associated Protein Tyrosine Phosphorylation and Membrane Fluidity Changes Are Impaired in the Spermatozoa of Asthenozoospermic Patients. Reproduction, 129, 697-705.
https://doi.org/10.1530/rep.1.00584
[8]  Gmoshinski, I.V., Shipelin, V.A., Trusov, N.V., Apryatin, S.A., Mzhelskaya, K.V., Shumakova, A.A., et al. (2021) Effects of Tyrosine and Tryptophan Supplements on the Vital Indicators in Mice Differently Prone to Diet-Induced Obesity. International Journal of Molecular Sciences, 22, Article 5956.
https://doi.org/10.3390/ijms22115956
[9]  Shipelin, V.A., Trusov, N.V., Apryatin, S.A., Shumakova, A.A., Balakina, A.S., Riger, N.A., et al. (2021) Effects of Tyrosine and Tryptophan in Rats with Diet-Induced Obesity. International Journal of Molecular Sciences, 22, Article 2429.
https://doi.org/10.3390/ijms22052429
[10]  Kim, K.Y., Kim, M.S., Lee, Y.J., Lee, Y.A., Lee, S.Y., Shin, C.H., et al. (2022) Glutamic Acid Decarboxylase and Tyrosine Phosphatase-Related Islet Antigen-2 Positivity among Children and Adolescents with Diabetes in Korea. Diabetes & Metabolism Journal, 46, 948-952.
https://doi.org/10.4093/dmj.2021.0332
[11]  Li, J., Cao, Y., Sun, X., Han, L., Li, S., Gu, W., et al. (2018) Plasma Tyrosine and Its Interaction with Low High‐Density Lipoprotein Cholesterol and the Risk of Type 2 Diabetes Mellitus in Chinese. Journal of Diabetes Investigation, 10, 491-498.
https://doi.org/10.1111/jdi.12898
[12]  Hussain, M., Ikram, W. and Ikram, U. (2023) Role of c-Src and Reactive Oxygen Species in Cardiovascular Diseases. Molecular Genetics and Genomics, 298, 315-328.
https://doi.org/10.1007/s00438-023-01992-9
[13]  Nemet, I., Li, X.S., Haghikia, A., Li, L., Wilcox, J., Romano, K.A., et al. (2023) Atlas of Gut Microbe-Derived Products from Aromatic Amino Acids and Risk of Cardiovascular Morbidity and Mortality. European Heart Journal, 44, 3085-3096.
https://doi.org/10.1093/eurheartj/ehad333
[14]  Jiang, M., Zhao, X., Jiang, Z., Wang, G. and Zhang, D. (2022) Protein Tyrosine Nitration in Atherosclerotic Endothelial Dysfunction. Clinica Chimica Acta, 529, 34-41.
https://doi.org/10.1016/j.cca.2022.02.004
[15]  Davey Smith, G. and Ebrahim, S. (2003) ‘Mendelian Randomization’: Can Genetic Epidemiology Contribute to Understanding Environmental Determinants of Disease? International Journal of Epidemiology, 32, 1-22.
https://doi.org/10.1093/ije/dyg070
[16]  Lawlor, D.A., Harbord, R.M., Sterne, J.A.C., Timpson, N. and Davey Smith, G. (2008) Mendelian Randomization: Using Genes as Instruments for Making Causal Inferences in Epidemiology. Statistics in Medicine, 27, 1133-1163.
https://doi.org/10.1002/sim.3034
[17]  Porcu, E., Rüeger, S., Lepik, K., Agbessi, M., Ahsan, H., Alves, I., et al. (2019) Mendelian Randomization Integrating GWAS and eQTL Data Reveals Genetic Determinants of Complex and Clinical Traits. Nature Communications, 10, Article No. 330.
https://doi.org/10.1038/s41467-019-10936-0
[18]  Zheng, J., Baird, D., Borges, M., Bowden, J., Hemani, G., Haycock, P., et al. (2017) Recent Developments in Mendelian Randomization Studies. Current Epidemiology Reports, 4, 330-345.
https://doi.org/10.1007/s40471-017-0128-6
[19]  Hase, A., Jung, S.E. and aan het Rot, M. (2015) Behavioral and Cognitive Effects of Tyrosine Intake in Healthy Human Adults. Pharmacology Biochemistry and Behavior, 133, 1-6.
https://doi.org/10.1016/j.pbb.2015.03.008
[20]  Buffone, M.G. (2004) Human Sperm Subpopulations: Relationship between Functional Quality and Protein Tyrosine Phosphorylation. Human Reproduction, 19, 139-146.
https://doi.org/10.1093/humrep/deh040
[21]  Katoh, Y., Takebayashi, K., Kikuchi, A., Iki, A., Kikuchi, K., Tamba, M., et al. (2014) Porcine Sperm Capacitation Involves Tyrosine Phosphorylation and Activation of Aldose Reductase. Reproduction, 148, 389-401.
https://doi.org/10.1530/rep-14-0199

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133