|
基于影像数据的多模态融合技术在前列腺癌诊疗中的研究现状
|
Abstract:
前列腺癌(PCa)是全球男性中最常见的恶性肿瘤之一,早期准确诊断和个性化治疗是降低其死亡率的重要策略。传统的单一模态诊断方法难以全面评估PCa的复杂性,而多模态数据融合(MDF)技术通过整合影像资料、临床信息、生化指标、病理数据和基因组数据等多种信息源,为PCa的诊断、分级、预后评估及治疗方案制定提供了新的思路。本文综述了基于影像数据的MDF技术在PCa诊疗中的研究现状,包括数据预处理与标准化、特征提取与表示、融合策略以及融合后数据的分析与决策。探讨了MDF在影像数据间的融合、影像与临床信息、生化指标、病理和基因数据融合中的具体应用。尽管MDF展现出巨大的应用潜力,但在数据异质性、模型可解释性和标准化方面仍面临诸多挑战。未来研究应着重开发更加高效且可解释的融合算法,推动数据标准化进程,进一步提高PCa诊疗的精准性和个性化水平,为患者提供更优质的医疗服务。
Prostate cancer (PCa) is one of the most common malignant tumors in men worldwide. Early and accurate diagnosis, along with personalized treatment, are essential strategies for reducing its mortality rate. Traditional single-modality diagnostic methods often fall short in comprehensively assessing the complexity of PCa. Multimodal data fusion (MDF) technology, which integrates diverse information sources such as imaging data, clinical information, biochemical markers, pathology data, and genomic data, offers a novel approach for the diagnosis, grading, prognosis assessment, and treatment planning of PCa. This review summarizes the current research status of MDF technology based on imaging data in PCa diagnosis and treatment, including aspects such as data preprocessing and standardization, feature extraction and representation, fusion strategies, and post-fusion data analysis and decision-making. It explores the specific applications of MDF in integrating imaging data with clinical information, biochemical markers, pathology, and genetic data. Despite the significant potential of MDF, challenges remain in terms of data heterogeneity, model interpretability, and standardization. Future research should focus on developing more efficient and interpretable fusion algorithms, promoting data standardization, and further enhancing the precision and personalization of PCa diagnosis and treatment to provide better healthcare services for patients.
[1] | Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492 |
[2] | Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. https://doi.org/10.3322/caac.21763 |
[3] | Paller, C.J. and Antonarakis, E.S. (2013) Management of Biochemically Recurrent Prostate Cancer after Local Therapy: Evolving Standards of Care and New Directions. Clinical Advances in Hematology & Oncology, 11, 14-23. |
[4] | Kanesvaran, R., Castro, E., Wong, A., Fizazi, K., Chua, M.L.K., Zhu, Y., et al. (2022) Panasian Adapted ESMO Clinical Practice Guidelines for the Diagnosis, Treatment and Follow-Up of Patients with Prostate Cancer. ESMO Open, 7, Article ID: 100518. https://doi.org/10.1016/j.esmoop.2022.100518 |
[5] | Parker, C., Castro, E., Fizazi, K., Heidenreich, A., Ost, P., Procopio, G., et al. (2020) Prostate Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 31, 1119-1134. https://doi.org/10.1016/j.annonc.2020.06.011 |
[6] | Baltrusaitis, T., Ahuja, C. and Morency, L. (2019) Multimodal Machine Learning: A Survey and Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 423-443. https://doi.org/10.1109/tpami.2018.2798607 |
[7] | Duhamel, A., Nuttens, M.C., Devos, P., Picavet, M. and Beuscart, R. (2003) A Preprocessing Method for Improving Data Mining Techniques. Application to a Large Medical Diabetes Database. Studies in Health Technology and Informatics, 95, 269-274. |
[8] | Li, X., Qiu, Y., Zhou, J. and Xie, Z. (2021) Applications and Challenges of Machine Learning Methods in Alzheimer’s Disease Multi-Source Data Analysis. Current Genomics, 22, 564-582. https://doi.org/10.2174/1389202923666211216163049 |
[9] | Jiang, J. and Shang, J. (2023) Feature Screening for High-Dimensional Variable Selection in Generalized Linear Models. Entropy, 25, Article No. 851. https://doi.org/10.3390/e25060851 |
[10] | Wang, J., Borji, A., Jay Kuo, C. and Itti, L. (2016) Learning a Combined Model of Visual Saliency for Fixation Prediction. IEEE Transactions on Image Processing, 25, 1566-1579. https://doi.org/10.1109/tip.2016.2522380 |
[11] | Sharma, H., Drukker, L., Papageorghiou, A.T. and Noble, J.A. (2021) Multi-Modal Learning from Video, Eye Tracking, and Pupillometry for Operator Skill Characterization in Clinical Fetal Ultrasound. 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, 13-16 April 2021, 1646-1649. https://doi.org/10.1109/isbi48211.2021.9433863 |
[12] | Gao, J., Li, P., Chen, Z. and Zhang, J. (2020) A Survey on Deep Learning for Multimodal Data Fusion. Neural Computation, 32, 829-864. https://doi.org/10.1162/neco_a_01273 |
[13] | Sedghi, A., Mehrtash, A., Jamzad, A., Amalou, A., Wells, W.M., Kapur, T., et al. (2020) Improving Detection of Prostate Cancer Foci via Information Fusion of MRI and Temporal Enhanced Ultrasound. International Journal of Computer Assisted Radiology and Surgery, 15, 1215-1223. https://doi.org/10.1007/s11548-020-02172-5 |
[14] | Yang, H., Zhou, T., Zhou, Y., Zhang, Y. and Fu, H. (2023) Flexible Fusion Network for Multi-Modal Brain Tumor Segmentation. IEEE Journal of Biomedical and Health Informatics, 27, 3349-3359. https://doi.org/10.1109/jbhi.2023.3271808 |
[15] | He, X., Liu, X., Zuo, F., Shi, H. and Jing, J. (2023) Artificial Intelligence-Based Multi-Omics Analysis Fuels Cancer Precision Medicine. Seminars in Cancer Biology, 88, 187-200. https://doi.org/10.1016/j.semcancer.2022.12.009 |
[16] | Light, A., Mayor, N., Cullen, E., Kirkham, A., Padhani, A.R., Arya, M., et al. (2024) The Transatlantic Recommendations for Prostate Gland Evaluation with Magnetic Resonance Imaging after Focal Therapy (TARGET): A Systematic Review and International Consensus Recommendations. European Urology, 85, 466-482. https://doi.org/10.1016/j.eururo.2024.02.001 |
[17] | Cornford, P., van den Bergh, R.C.N., Briers, E., Van den Broeck, T., Brunckhorst, O., Darraugh, J., et al. (2024) EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer—2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. European Urology, 86, 148-163. https://doi.org/10.1016/j.eururo.2024.03.027 |
[18] | Lowrance, W.T., Murad, M.H., Oh, W.K., Jarrard, D.F., Resnick, M.J. and Cookson, M.S. (2018) Castration-Resistant Prostate Cancer: AUA Guideline Amendment 2018. Journal of Urology, 200, 1264-1272. https://doi.org/10.1016/j.juro.2018.07.090 |
[19] | Wang, Q., Ketteler, S., Bagheri, S., Ebrahimifard, A., Luster, M., Librizzi, D., et al. (2024) Diagnostic Efficacy of [(99m)Tc]Tc-PSMA SPECT/CT for Prostate Cancer: A Meta-Analysis. BMC Cancer, 24, Article No. 982. https://doi.org/10.1186/s12885-024-12734-4 |
[20] | Hofman, M.S., Hicks, R.J., Maurer, T. and Eiber, M. (2018) Prostate-Specific Membrane Antigen PET: Clinical Utility in Prostate Cancer, Normal Patterns, Pearls, and Pitfalls. RadioGraphics, 38, 200-217. https://doi.org/10.1148/rg.2018170108 |
[21] | Vishnu, P. and Tan, W.W. (2010) Update on Options for Treatment of Metastatic Castration-Resistant Prostate Cancer. OncoTargets and Therapy, 3, 39-51. https://doi.org/10.2147/ott.s5818 |
[22] | Shoji, S. (2019) Magnetic Resonance Imaging-Transrectal Ultrasound Fusion Image-Guided Prostate Biopsy: Current Status of the Cancer Detection and the Prospects of Tailor-Made Medicine of the Prostate Cancer. Investigative and Clinical Urology, 60, 4-13. https://doi.org/10.4111/icu.2019.60.1.4 |
[23] | Fu, Q., Zhang, K., Zhang, J., Zhu, A., Sun, D., Guo, S., et al. (2020) Is Targeted Magnetic Resonance Imaging/Transrectal Ultrasound Fusion Prostate Biopsy Enough for the Detection of Prostate Cancer in Patients with PI-RADS ≥ 3: Results of a Prospective, Randomized Clinical Trial. Journal of Cancer Research and Therapeutics, 16, Article No. 1698. https://doi.org/10.4103/jcrt.jcrt_1495_20 |
[24] | Wang, L., Zhang, Y., Zuo, S. and Xu, Y. (2021) A Review of the Research Progress of Interventional Medical Equipment and Methods for Prostate Cancer. The International Journal of Medical Robotics and Computer Assisted Surgery, 17, e2303. https://doi.org/10.1002/rcs.2303 |
[25] | Lim, S., Jun, C., Chang, D., Petrisor, D., Han, M. and Stoianovici, D. (2019) Robotic Transrectal Ultrasound Guided Prostate Biopsy. IEEE Transactions on Biomedical Engineering, 66, 2527-2537. https://doi.org/10.1109/tbme.2019.2891240 |
[26] | Zhang, Y., Yuan, Q., Muhammad Muzzammil, H., Gao, G. and Xu, Y. (2023) Image-Guided Prostate Biopsy Robots: A Review. Mathematical Biosciences and Engineering, 20, 15135-15166. https://doi.org/10.3934/mbe.2023678 |
[27] | Grizzi, F. and Taverna, G. (2024) Editorial: PET/CT and MRI in Prostate Cancer. Frontiers in Oncology, 14, Article ID: 1421542. https://doi.org/10.3389/fonc.2024.1421542 |
[28] | Hoffman, A. and Amiel, G.E. (2023) The Impact of PSMA PET/CT on Modern Prostate Cancer Management and Decision Making—The Urological Perspective. Cancers, 15, Article No. 3402. https://doi.org/10.3390/cancers15133402 |
[29] | Gammel, M.C.M., Solari, E.L., Eiber, M., Rauscher, I. and Nekolla, S.G. (2024) A Clinical Role of PET-MRI in Prostate Cancer? Seminars in Nuclear Medicine, 54, 132-140. https://doi.org/10.1053/j.semnuclmed.2023.08.001 |
[30] | Awiwi, M.O., Gjoni, M., Vikram, R., Altinmakas, E., Dogan, H., Bathala, T.K., et al. (2023) MRI and PSMA PET/CT of Biochemical Recurrence of Prostate Cancer. RadioGraphics, 43, e230112. https://doi.org/10.1148/rg.230112 |
[31] | Subesinghe, M., Kulkarni, M. and Cook, G.J. (2020) The Role of PET-CT Imaging in Prostate Cancer. Seminars in Ultrasound, CT and MRI, 41, 373-391. https://doi.org/10.1053/j.sult.2020.04.004 |
[32] | Ingvar, J., Hvittfeldt, E., Trägårdh, E., Simoulis, A. and Bjartell, A. (2022) Assessing the Accuracy of [18F]PSMA-1007 PET/CT for Primary Staging of Lymph Node Metastases in Intermediate-and High-Risk Prostate Cancer Patients. EJNMMI Research, 12, Article No. 48. https://doi.org/10.1186/s13550-022-00918-7 |
[33] | Shanmugasundaram, R., Saad, J., Heyworth, A., Wong, V., Pelecanos, A., Arianayagam, M., et al. (2023) Intra‐Individual Comparison of Prostate‐Specific Membrane Antigen Positron Emission Tomography/Computed Tomography versus Bone Scan in Detecting Skeletal Metastasis at Prostate Cancer Diagnosis. BJU International, 133, 25-32. https://doi.org/10.1111/bju.16115 |
[34] | Pepe, P., Pepe, L., Curduman, M., Pennisi, M. and Fraggetta, F. (2024) Ductal Prostate Cancer Staging: Role of PSMA PET/CT. Archivio Italiano di Urologia e Andrologia, 96, Article No. 12132. https://doi.org/10.4081/aiua.2024.12132 |
[35] | Decazes, P., Hinault, P., Veresezan, O., Thureau, S., Gouel, P. and Vera, P. (2021) Trimodality PET/CT/MRI and Radiotherapy: A Mini-Review. Frontiers in Oncology, 10, Article ID: 614008. https://doi.org/10.3389/fonc.2020.614008 |
[36] | Hoff, B.A., Brisset, J.C., Galbán, S., et al (2018) Multimodal Imaging Provides Insight into Targeted Therapy Response in Meta-Static Prostate Cancer to the Bone. American Journal of Nuclear Medicine and Molecular Imaging, 8, 189-199. |
[37] | Dilixiati, D., Kadier, K., Laihaiti, D., Lu, J., Azhati, B. and Rexiati, M. (2023) The Association between Sexual Dysfunction and Prostate Cancer: A Systematic Review and Meta-Analysis. The Journal of Sexual Medicine, 20, 184-193. https://doi.org/10.1093/jsxmed/qdac025 |
[38] | Panaiyadiyan, S. and Kumar, R. (2024) Prostate Cancer Nomograms and Their Application in Asian Men: A Review. Prostate International, 12, 1-9. https://doi.org/10.1016/j.prnil.2023.07.004 |
[39] | Gamito, E.J., Stone, N.N., Batuello, J.T. and Crawford, E.D. (2000) Use of Artificial Neural Networks in the Clinical Staging of Prostate Cancer: Implications for Prostate Brachytherapy. Techniques in Urology, 6, 60-63. |
[40] | Baccala, A., Reuther, A.M., Bianco, F.J., Scardino, P.T., Kattan, M.W. and Klein, E.A. (2007) Complete Resection of Seminal Vesicles at Radical Prostatectomy Results in Substantial Long-Term Disease-Free Survival: Multi-Institutional Study of 6740 Patients. Urology, 69, 536-540. https://doi.org/10.1016/j.urology.2006.12.013 |
[41] | Gilliland, F.D., Hoffman, R.M., Hamilton, A., Albertsen, P., Eley, J.W., Harlan, L., et al. (1999) Predicting Extracapsular Extension of Prostate Cancer in Men Treated with Radical Prostatectomy: Results from the Population Based Prostate Cancer Outcomes Study. Journal of Urology, 162, 1341-1345. https://doi.org/10.1016/s0022-5347(05)68281-x |
[42] | Hou, Y., Bao, M., Wu, C., Zhang, J., Zhang, Y. and Shi, H. (2019) A Machine Learning‐Assisted Decision‐Support Model to Better Identify Patients with Prostate Cancer Requiring an Extended Pelvic Lymph Node Dissection. BJU International, 124, 972-983. https://doi.org/10.1111/bju.14892 |
[43] | Li, S.-L., et al. (2024) Advances in Multiparametric Magnetic Resonance Imaging Combined with Biomarkers for the Diagnosis of High-Grade Prostate Cancer. Frontiers in Surgery, 11, Article ID: 1429831. |
[44] | Morris, K.E., Grimberg, D., Arcot, R. and Moul, J.W. (2021) Aggressive Prostate Cancer Masquerading as Acute Prostatitis. The Canadian Journal of Urology, 28, 10799-10801. |
[45] | Lokant, M.T. and Naz, R.K. (2014) Presence of PSA Auto-Antibodies in Men with Prostate Abnormalities (Prostate Cancer/Benign Prostatic Hyperplasia/Prostatitis). Andrologia, 47, 328-332. https://doi.org/10.1111/and.12265 |
[46] | Choi, M.H., Ha, U., Park, Y., Hong, S., Lee, J.Y., Lee, Y.J., et al. (2023) Combined MRI and PSA Strategy Improves Biopsy Decisions Compared with PSA Only: Longitudinal Observations of a Cohort of Patients with a PSA Level Less than 20 ng/ml. Academic Radiology, 30, 509-515. https://doi.org/10.1016/j.acra.2022.07.020 |
[47] | Mikah, P., Krabbe, L., Eminaga, O., Herrmann, E., Papavassilis, P., Hinkelammert, R., et al. (2016) Dynamic Changes of Alkaline Phosphatase Are Strongly Associated with PSA-Decline and Predict Best Clinical Benefit Earlier than PSA-Changes under Therapy with Abiraterone Acetate in Bone Metastatic Castration Resistant Prostate Cancer. BMC Cancer, 16, Article No. 214. https://doi.org/10.1186/s12885-016-2260-y |
[48] | Sciarra, A., Panebianco, V., Cattarino, S., Busetto, G.M., De Berardinis, E., Ciccariello, M., et al. (2012) Multiparametric Magnetic Resonance Imaging of the Prostate Can Improve the Predictive Value of the Urinary Prostate Cancer Antigen 3 Test in Patients with Elevated Prostate‐Specific Antigen Levels and a Previous Negative Biopsy. BJU International, 110, 1661-1665. https://doi.org/10.1111/j.1464-410x.2012.11146.x |
[49] | Glemser, P.A., Rotkopf, L.T., Ziener, C.H., Beuthien-Baumann, B., Weru, V., Kopp-Schneider, A., et al. (2022) Hybrid Imaging with [(68)Ga]PSMA-11 PET-CT and PET-MRI in Biochemically Recurrent Prostate Cancer. Cancer Imaging, 22, Article No. 53. https://doi.org/10.1186/s40644-022-00489-9 |
[50] | Zhao, Z., Ma, W., Zeng, G., Qi, D., Ou, L. and Liang, Y. (2011) Serum Early Prostate Cancer Antigen (EPCA) Level and Its Association with Disease Progression in Prostate Cancer in a Chinese Population. PLOS ONE, 6, e19284. https://doi.org/10.1371/journal.pone.0019284 |
[51] | Lim, S.M., Kim, Y.N., Park, K.H., Kang, B., Chon, H.J., Kim, C., et al. (2016) Bone Alkaline Phosphatase as a Surrogate Marker of Bone Metastasis in Gastric Cancer Patients. BMC Cancer, 16, Article No. 385. https://doi.org/10.1186/s12885-016-2415-x |
[52] | Qiao, X., Gu, X., Liu, Y., Shu, X., Ai, G., Qian, S., et al. (2023) MRI Radiomics-Based Machine Learning Models for Ki67 Expression and Gleason Grade Group Prediction in Prostate Cancer. Cancers, 15, Article No. 4536. https://doi.org/10.3390/cancers15184536 |
[53] | Zhou, C., Zhang, Y., Guo, S., Wang, D., Lv, H., Qiao, X., et al. (2023) Multiparametric MRI Radiomics in Prostate Cancer for Predicting KI-67 Expression and Gleason Score: A Multicenter Retrospective Study. Discover Oncology, 14, Article No. 133. https://doi.org/10.1007/s12672-023-00752-w |
[54] | Zhang, Y., Zhou, C., Guo, S., Wang, C., Yang, J., Yang, Z., et al. (2024) Deep Learning Algorithm-Based Multimodal MRI Radiomics and Pathomics Data Improve Prediction of Bone Metastases in Primary Prostate Cancer. Journal of Cancer Research and Clinical Oncology, 150, Article No. 78. https://doi.org/10.1007/s00432-023-05574-5 |
[55] | Zhou, C., Zhang, Y., Guo, S., Huang, Y., Qiao, X., Wang, R., et al. (2024) Multimodal Data Integration for Predicting Progression Risk in Castration-Resistant Prostate Cancer Using Deep Learning: A Multicenter Retrospective Study. Frontiers in Oncology, 14, Article ID: 1287995. https://doi.org/10.3389/fonc.2024.1287995 |
[56] | Hiremath, A., Corredor, G., Li, L., Leo, P., Magi-Galluzzi, C., Elliott, R., et al. (2024) An Integrated Radiology-Pathology Machine Learning Classifier for Outcome Prediction Following Radical Prostatectomy: Preliminary Findings. Heliyon, 10, e29602. https://doi.org/10.1016/j.heliyon.2024.e29602 |
[57] | Hu, C., Qiao, X., Huang, R., Hu, C., Bao, J. and Wang, X. (2024) Development and Validation of a Multimodality Model Based on Whole-Slide Imaging and Biparametric MRI for Predicting Postoperative Biochemical Recurrence in Prostate Cancer. Radiology: Imaging Cancer, 6, e230143. https://doi.org/10.1148/rycan.230143 |
[58] | Harmon, S.A., Gesztes, W., Young, D., Mehralivand, S., McKinney, Y., Sanford, T., et al. (2021) Prognostic Features of Biochemical Recurrence of Prostate Cancer Following Radical Prostatectomy Based on Multiparametric MRI and Immunohistochemistry Analysis of MRI-Guided Biopsy Specimens. Radiology, 299, 613-623. https://doi.org/10.1148/radiol.2021202425 |
[59] | Robinson, D., Van Allen, E.M., Wu, Y., Schultz, N., Lonigro, R.J., Mosquera, J., et al. (2015) Integrative Clinical Genomics of Advanced Prostate Cancer. Cell, 161, 1215-1228. https://doi.org/10.1016/j.cell.2015.05.001 |
[60] | Dinis Fernandes, C., Schaap, A., Kant, J., van Houdt, P., Wijkstra, H., Bekers, E., et al. (2023) Radiogenomics Analysis Linking Multiparametric MRI and Transcriptomics in Prostate Cancer. Cancers, 15, Article No. 3074. https://doi.org/10.3390/cancers15123074 |
[61] | Fischer, S., Tahoun, M., Klaan, B., Thierfelder, K.M., Weber, M., Krause, B.J., et al. (2019) A Radiogenomic Approach for Decoding Molecular Mechanisms Underlying Tumor Progression in Prostate Cancer. Cancers, 11, Article No. 1293. https://doi.org/10.3390/cancers11091293 |
[62] | Ferro, M., de Cobelli, O., Vartolomei, M.D., Lucarelli, G., Crocetto, F., Barone, B., et al. (2021) Prostate Cancer Radiogenomics—From Imaging to Molecular Characterization. International Journal of Molecular Sciences, 22, Article No. 9971. https://doi.org/10.3390/ijms22189971 |
[63] | Ren, S., Wei, G., Liu, D., Wang, L., Hou, Y., Zhu, S., et al. (2018) Whole-Genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression. European Urology, 73, 322-339. https://doi.org/10.1016/j.eururo.2017.08.027 |
[64] | Zhang, Y., Dong, Z., Wang, S., Yu, X., Yao, X., Zhou, Q., et al. (2020) Advances in Multimodal Data Fusion in Neuroimaging: Overview, Challenges, and Novel Orientation. Information Fusion, 64, 149-187. https://doi.org/10.1016/j.inffus.2020.07.006 |
[65] | Huang, B., Yang, F., Yin, M., Mo, X. and Zhong, C. (2020) A Review of Multimodal Medical Image Fusion Techniques. Computational and Mathematical Methods in Medicine, 2020, Article ID: 8279342. https://doi.org/10.1155/2020/8279342 |
[66] | Wei, L., Osman, S., Hatt, M. and El Naqa, I. (2019) Machine Learning for Radiomics-Based Multimodality and Multiparametric Modeling. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 63, 323-338. https://doi.org/10.23736/s1824-4785.19.03213-8 |