全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同起搏部位研究进展
Research Progress of Different Pacing Sites

DOI: 10.12677/acm.2024.14123143, PP. 750-758

Keywords: 起搏部位,心室起搏,传导系统起搏,生理性起搏
Pacing Site
, Ventricular Pacing, Conduction System Pacing, Physiological Pacing

Full-Text   Cite this paper   Add to My Lib

Abstract:

心脏起搏60多年来在临床应用中不断发展,随着人们逐渐认识到传统起搏方式的不足后,更为符合生理的起搏方式应运而生。生理性起搏方式是否更符合预期,在临床结局上是否优于传统起搏方式,尚有待考究。本综述旨在全面概述不同起搏部位的优势和局限性,为临床应用提供参考,对不同起搏部位对比研究提出相关展望。
Cardiac pacing for clinical application has been developing for more than 60 years. With the gradual recognition of the disadvantage of traditional pacing, physiological pacing has emerged. Whether physiologic pacing can meet more expectations and whether it is better than traditional pacing in clinical outcome remains to be studied. The purpose of this review is to give an overview of the advantages and limitations of different pacing sites, provide reference for clinical application, and propose prospects for studies for comparation of different pacing sites.

References

[1]  Chung, M.K., Patton, K.K., Lau, C., Dal Forno, A.R.J., Al-Khatib, S.M., Arora, V., et al. (2023) 2023 HRS/APHRS/LAHRS Guideline on Cardiac Physiologic Pacing for the Avoidance and Mitigation of Heart Failure. Heart Rhythm, 20, e17-e91.
https://doi.org/10.1016/j.hrthm.2023.03.1538
[2]  Raatikainen, M.J.P., Arnar, D.O., Merkely, B., Nielsen, J.C., Hindricks, G., Heidbuchel, H., et al. (2017) A Decade of Information on the Use of Cardiac Implantable Electronic Devices and Interventional Electrophysiological Procedures in the European Society of Cardiology Countries: 2017 Report from the European Heart Rhythm Association. EP Europace, 19, ii1-ii90.
https://doi.org/10.1093/europace/eux258
[3]  Biffi, M., Capobianco, C., Spadotto, A., Bartoli, L., Sorrentino, S., Minguzzi, A., et al. (2020) Pacing Devices to Treat Bradycardia: Current Status and Future Perspectives. Expert Review of Medical Devices, 18, 161-177.
https://doi.org/10.1080/17434440.2021.1866543
[4]  Burri, H., Starck, C., Auricchio, A., Biffi, M., Burri, M., D’Avila, A., et al. (2021) EHRA Expert Consensus Statement and Practical Guide on Optimal Implantation Technique for Conventional Pacemakers and Implantable Cardioverter-Defibrillators: Endorsed by the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), and the Latin-American Heart Rhythm Society (LAHRS). EP Europace, 23, 983-1008.
https://doi.org/10.1093/europace/euaa367
[5]  Waddingham, P.H., Elliott, J., Bates, A., Bilham, J., Muthumala, A., Honarbakhsh, S., et al. (2022) Iatrogenic Cardiac Perforation Due to Pacemaker and Defibrillator Leads: A Contemporary Multicentre Experience. EP Europace, 24, 1824-1833.
https://doi.org/10.1093/europace/euac105
[6]  Israel, C.W., Tribunyan, S., Yen Ho, S. and Cabrera, J.A. (2022) Anatomy for Right Ventricular Lead Implantation. Herzschrittmachertherapie + Elektrophysiologie, 33, 319-326.
https://doi.org/10.1007/s00399-022-00872-w
[7]  Xin, M., Gao, p. and Zhang, S. (2021) Effects of Long-Term Right Ventricular Apex Pacing on Left Ventricular Dyssynchrony, Morphology and Systolic Function. International Journal of Cardiology, 331, 91-99.
https://doi.org/10.1016/j.ijcard.2021.01.042
[8]  Osiecki, A., Kochman, W., Witte, K.K., Mańczak, M., Olszewski, R. and Michałkiewicz, D. (2022) Cardiomyopathy Associated with Right Ventricular Apical Pacing-Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 11, Article No. 6889.
https://doi.org/10.3390/jcm11236889
[9]  Chango-Azanza, D.X., Munín, M.A., Sánchez, G.A., Arévalo-Pérez, L.M., Chango-Azanza, J.J., Pelayo, M.E., et al. (2020) La asincronía ventricular izquierda como resultado de la estimulación apical permanente por dispositivos en el ventrículo derecho. Archivos de Cardiología de México, 90, 328-335.
https://doi.org/10.24875/acm.20000003
[10]  Chávez-González, E., Nodarse-Concepción, A., Donoiu, I., Rodríguez-González, F., Puerta, R.C., Elizundia, J.M.C., et al. (2021) Increased QRS Duration and Dispersion Are Associated with Mechanical Dyssynchrony in Patients with Permanent Right Ventricular Apical Pacing. Discoveries, 9, e128.
https://doi.org/10.15190/d.2021.7
[11]  Somma, V., Ha, F.J., Palmer, S., Mohamed, U. and Agarwal, S. (2023) Pacing-Induced Cardiomyopathy: A Systematic Review and Meta-Analysis of Definition, Prevalence, Risk Factors, and Management. Heart Rhythm, 20, 282-290.
https://doi.org/10.1016/j.hrthm.2022.09.019
[12]  Da Costa, A., Gabriel, L., Romeyer-Bouchard, C., Géraldine, B., Gate-Martinet, A., Laurence, B., et al. (2013) Focus on Right Ventricular Outflow Tract Septal Pacing. Archives of Cardiovascular Diseases, 106, 394-403.
https://doi.org/10.1016/j.acvd.2012.08.005
[13]  Galand, V., Martins, R.P., Donal, E., Behar, N., Crocq, C., Soulié, G.G., et al. (2022) Septal versus Apical Pacing Sites in Permanent Right Ventricular Pacing: The Multicentre Prospective SEPTAL-PM Study. Archives of Cardiovascular Diseases, 115, 288-294.
https://doi.org/10.1016/j.acvd.2021.12.007
[14]  Yoshiyama, T., Shimeno, K., Hayashi, Y., Ito, A., Iwata, S., Matsumura, Y., et al. (2022) Risk Factors of Pacing‐Induced Cardiomyopathy—Insights from Lead Position. Journal of Arrhythmia, 38, 408-415.
https://doi.org/10.1002/joa3.12712
[15]  Dias-Frias, A., Costa, R., Campinas, A., Alexandre, A., Sá-Couto, D., Sousa, M.J., et al. (2022) Right Ventricular Septal versus Apical Pacing: Long-Term Incidence of Heart Failure and Survival. Journal of Cardiovascular Development and Disease, 9, Article No. 444.
https://doi.org/10.3390/jcdd9120444
[16]  Simader, F., Arnold, A. and Whinnett, Z. (2023) Comparison of Methods for Delivering Cardiac Resynchronization Therapy: Electrical Treatment Targets and Mechanisms of Action. Expert Review of Medical Devices, 20, 337-348.
https://doi.org/10.1080/17434440.2023.2199925
[17]  Khurshid, S. and Frankel, D.S. (2023) Pacing-Induced Cardiomyopathy. Cardiology Clinics, 41, 449-461.
https://doi.org/10.1016/j.ccl.2023.03.010
[18]  Merkely, B., Hatala, R., Wranicz, J.K., Duray, G., Földesi, C., Som, Z., et al. (2023) Upgrade of Right Ventricular Pacing to Cardiac Resynchronization Therapy in Heart Failure: A Randomized Trial. European Heart Journal, 44, 4259-4269.
https://doi.org/10.1093/eurheartj/ehad591
[19]  Khurshid, S., Obeng-Gyimah, E., Supple, G.E., Schaller, R., Lin, D., Owens, A.T., et al. (2018) Reversal of Pacing-Induced Cardiomyopathy Following Cardiac Resynchronization Therapy. JACC: Clinical Electrophysiology, 4, 168-177.
https://doi.org/10.1016/j.jacep.2017.10.002
[20]  Lu, D., Zhang, H. and Zhang, H. (2018) Cardiac Resynchronization Therapy Improves Left Ventricular Remodeling and Function Compared with Right Ventricular Pacing in Patients with Atrioventricular Block. Heart Failure Reviews, 23, 919-926.
https://doi.org/10.1007/s10741-018-9722-z
[21]  Rickard, J., Patel, D., Park, C., Marine, J.E., Sinha, S., Tang, W.H.W., et al. (2021) Long-Term Outcomes in Patients with a Left Ejection Fraction ≤ 15 % Undergoing Cardiac Resynchronization Therapy. JACC: Clinical Electrophysiology, 7, 36-46.
https://doi.org/10.1016/j.jacep.2020.07.025
[22]  Green, P.G., Herring, N. and Betts, T.R. (2022) What Have We Learned in the Last 20 Years about CRT Non-Responders? Cardiac Electrophysiology Clinics, 14, 283-296.
https://doi.org/10.1016/j.ccep.2021.12.019
[23]  Naqvi, S.Y., Jawaid, A., Goldenberg, I. and Kutyifa, V. (2018) Non-response to Cardiac Resynchronization Therapy. Current Heart Failure Reports, 15, 315-321.
https://doi.org/10.1007/s11897-018-0407-7
[24]  Daubert, C., Behar, N., Martins, R.P., Mabo, P. and Leclercq, C. (2016) Avoiding Non-Responders to Cardiac Resynchronization Therapy: A Practical Guide. European Heart Journal, 38, 1463-1472.
https://doi.org/10.1093/eurheartj/ehw270
[25]  Pezel, T., Mika, D., Logeart, D., Cohen‐Solal, A., Beauvais, F., Henry, P., et al. (2020) Characterization of Non‐Response to Cardiac Resynchronization Therapy by Post‐Procedural Computed Tomography. Pacing and Clinical Electrophysiology, 44, 135-144.
https://doi.org/10.1111/pace.14134
[26]  Zhu, H., Zou, T., Zhong, Y., Yang, C., Ren, Y. and Wang, F. (2019) Prevention of Non-Response to Cardiac Resynchronization Therapy: Points to Remember. Heart Failure Reviews, 25, 269-275.
https://doi.org/10.1007/s10741-019-09834-w
[27]  Glikson, M., Nielsen, J.C., Kronborg, M.B., Michowitz, Y., Auricchio, A., Barbash, I.M., et al. (2021) 2021 ESC Guidelines on Cardiac Pacing and Cardiac Resynchronization Therapy. EP Europace, 24, 71-164.
https://doi.org/10.1093/europace/euab232
[28]  Sharma, P.S., Vijayaraman, P. and Ellenbogen, K.A. (2019) Permanent His Bundle Pacing: Shaping the Future of Physiological Ventricular Pacing. Nature Reviews Cardiology, 17, 22-36.
https://doi.org/10.1038/s41569-019-0224-z
[29]  Vijayaraman, P., Naperkowski, A., Subzposh, F.A., Abdelrahman, M., Sharma, P.S., Oren, J.W., et al. (2018) Permanent His-Bundle Pacing: Long-Term Lead Performance and Clinical Outcomes. Heart Rhythm, 15, 696-702.
https://doi.org/10.1016/j.hrthm.2017.12.022
[30]  Huang, W., Su, L., Wu, S., Xu, L., Xiao, F., Zhou, X., et al. (2018) Long-Term Outcomes of His Bundle Pacing in Patients with Heart Failure with Left Bundle Branch Block. Heart, 105, 137-143.
https://doi.org/10.1136/heartjnl-2018-313415
[31]  Zhang, J., Guo, J., Hou, X., Wang, Y., Qian, Z., Li, K., et al. (2017) Comparison of the Effects of Selective and Non-Selective His Bundle Pacing on Cardiac Electrical and Mechanical Synchrony. EP Europace, 20, 1010-1017.
https://doi.org/10.1093/europace/eux120
[32]  Li, Y., Tian, H., Zhang, J., et al. (2021). Effects of His Bundle Pacing and Right Ventricular Apex Pacing on Cardiac electrical and Mechanical Synchrony and Cardiac Function in Patients with Heart Failure and Atrial Fibrillation. American Journal of Translational Research, 13, 3294-3301.
[33]  Vijayaraman, P., Pokharel, P., Subzposh, F.A., Oren, J.W., Storm, R.H., Batul, S.A., et al. (2023) His-Purkinje Conduction System Pacing Optimized Trial of Cardiac Resynchronization Therapy vs Biventricular Pacing: HOT-CRT Clinical Trial. JACC: Clinical Electrophysiology, 9, 2628-2638.
https://doi.org/10.1016/j.jacep.2023.08.003
[34]  Kato, H., Yanagisawa, S., Sakurai, T., Mizuno, C., Ota, R., Watanabe, R., et al. (2022) Efficacy of His Bundle Pacing on LV Relaxation and Clinical Improvement in HF and LBBB. JACC: Clinical Electrophysiology, 8, 59-69.
https://doi.org/10.1016/j.jacep.2021.06.011
[35]  Vijayaraman, P., Zalavadia, D., Haseeb, A., Dye, C., Madan, N., Skeete, J.R., et al. (2022) Clinical Outcomes of Conduction System Pacing Compared to Biventricular Pacing in Patients Requiring Cardiac Resynchronization Therapy. Heart Rhythm, 19, 1263-1271.
https://doi.org/10.1016/j.hrthm.2022.04.023
[36]  Wang, Y., Liu, F., Liu, M., Wang, Z., Lu, X., Huang, J., et al. (2023) His-Purkinje System Pacing versus Biventricular Pacing in Clinical Efficacy: A Systematic Review and Meta-Analysis. BMC Cardiovascular Disorders, 23, Article No. 285.
https://doi.org/10.1186/s12872-023-03307-7
[37]  Zaidi, S.M.J., Sohail, H., Satti, D.I., Sami, A., Anwar, M., Malik, J., et al. (2022) Tricuspid Regurgitation in His Bundle Pacing: A Systematic Review. Annals of Noninvasive Electrocardiology, 27, e12986.
https://doi.org/10.1111/anec.12986
[38]  Vijayaraman, P., Chung, M.K., Dandamudi, G., Upadhyay, G.A., Krishnan, K., Crossley, G., et al. (2018) His Bundle Pacing. Journal of the American College of Cardiology, 72, 927-947.
https://doi.org/10.1016/j.jacc.2018.06.017
[39]  Su, L., Wu, S., Wang, S., Wang, Z., Xiao, F., Shan, P., et al. (2018) Pacing Parameters and Success Rates of Permanent His-Bundle Pacing in Patients with Narrow QRS: A Single-Centre Experience. EP Europace, 21, 763-770.
https://doi.org/10.1093/europace/euy281
[40]  Keene, D., Arnold, A.D., Jastrzębski, M., Burri, H., Zweibel, S., Crespo, E., et al. (2019) His Bundle Pacing, Learning Curve, Procedure Characteristics, Safety, and Feasibility: Insights from a Large International Observational Study. Journal of Cardiovascular Electrophysiology, 30, 1984-1993.
https://doi.org/10.1111/jce.14064
[41]  Ali, N., Arnold, A.D., Miyazawa, A.A., Keene, D., Peters, N.S., Kanagaratnam, P., et al. (2023) Septal Scar as a Barrier to Left Bundle Branch Area Pacing. Pacing and Clinical Electrophysiology, 46, 1077-1084.
https://doi.org/10.1111/pace.14804
[42]  Elizari, M. (2017) The Normal Variants in the Left Bundle Branch System. Journal of Electrocardiology, 50, 389-399.
https://doi.org/10.1016/j.jelectrocard.2017.03.004
[43]  Huang, W., Chen, X., Su, L., Wu, S., Xia, X. and Vijayaraman, P. (2019) A Beginner’s Guide to Permanent Left Bundle Branch Pacing. Heart Rhythm, 16, 1791-1796.
https://doi.org/10.1016/j.hrthm.2019.06.016
[44]  Li, Y., Chen, K., Dai, Y., Li, C., Sun, Q., Chen, R., et al. (2019) Left Bundle Branch Pacing for Symptomatic Bradycardia: Implant Success Rate, Safety, and Pacing Characteristics. Heart Rhythm, 16, 1758-1765.
https://doi.org/10.1016/j.hrthm.2019.05.014
[45]  Wang, P., Yang, L., Zheng, S., Mai, J., Wei, Y., Liu, Y., et al. (2022) Left Bundle Branch Pacing on Mechanical Synchrony and Myocardial Work in Bradycardia Patients. The International Journal of Cardiovascular Imaging, 39, 369-378.
https://doi.org/10.1007/s10554-022-02742-5
[46]  Mao, Y., Duchenne, J., Yang, Y., Garweg, C., Yang, Y., Sheng, X., et al. (2023) Left Bundle Branch Pacing Better Preserves Ventricular Mechanical Synchrony than Right Ventricular Pacing: A Two-Centre Study. European Heart JournalCardiovascular Imaging, 25, 328-336.
https://doi.org/10.1093/ehjci/jead296
[47]  Liu, X., Li, W., Wang, L., Tian, S., Zhou, X. and Wu, M. (2021) Safety and Efficacy of Left Bundle Branch Pacing in Comparison with Conventional Right Ventricular Pacing: A Systematic Review and Meta-Analysis. Medicine, 100, e26560.
https://doi.org/10.1097/md.0000000000026560
[48]  Rademakers, L.M., Bouwmeester, S., Mast, T.P., Dekker, L., Houthuizen, P. and Bracke, F.A. (2022) Feasibility, Safety and Outcomes of Upgrading to Left Bundle Branch Pacing in Patients with Right Ventricular Pacing Induced Cardiomyopathy. Pacing and Clinical Electrophysiology, 45, 726-732.
https://doi.org/10.1111/pace.14515
[49]  Qian, Z., Wang, Y., Hou, X., Qiu, Y., Wu, H., Zhou, W., et al. (2021) Efficacy of Upgrading to Left Bundle Branch Pacing in Patients with Heart Failure after Right Ventricular Pacing. Pacing and Clinical Electrophysiology, 44, 472-480.
https://doi.org/10.1111/pace.14147
[50]  Wang, Y., Zhu, H., Hou, X., Wang, Z., Zou, F., Qian, Z., et al. (2022) Randomized Trial of Left Bundle Branch vs Biventricular Pacing for Cardiac Resynchronization Therapy. Journal of the American College of Cardiology, 80, 1205-1216.
https://doi.org/10.1016/j.jacc.2022.07.019
[51]  Chen, X., Ye, Y., Wang, Z., Jin, Q., Qiu, Z., Wang, J., et al. (2021) Cardiac Resynchronization Therapy via Left Bundle Branch Pacing vs. Optimized Biventricular Pacing with Adaptive Algorithm in Heart Failure with Left Bundle Branch Block: A Prospective, Multi-Centre, Observational Study. EP Europace, 24, 807-816.
https://doi.org/10.1093/europace/euab249
[52]  Bozorgi, A. (2023) Left Bundle Branch Pacing. The Journal of Tehran University Heart Center, 17, 165-167.
https://doi.org/10.18502/jthc.v17i4.11602
[53]  Huang, W., Wu, S., Vijayaraman, P., Su, L., Chen, X., Cai, B., et al. (2020) Cardiac Resynchronization Therapy in Patients with Nonischemic Cardiomyopathy Using Left Bundle Branch Pacing. JACC: Clinical Electrophysiology, 6, 849-858.
https://doi.org/10.1016/j.jacep.2020.04.011
[54]  Hou, X., Qian, Z., Wang, Y., Qiu, Y., Chen, X., Jiang, H., et al. (2019) Feasibility and Cardiac Synchrony of Permanent Left Bundle Branch Pacing through the Interventricular Septum. EP Europace, 21, 1694-1702.
https://doi.org/10.1093/europace/euz188
[55]  Vijayaraman, P., Subzposh, F.A., Naperkowski, A., Panikkath, R., John, K., Mascarenhas, V., et al. (2019) Prospective Evaluation of Feasibility and Electrophysiologic and Echocardiographic Characteristics of Left Bundle Branch Area Pacing. Heart Rhythm, 16, 1774-1782.
https://doi.org/10.1016/j.hrthm.2019.05.011
[56]  Prinzen, F.W. and Peschar, M. (2002) Relation between the Pacing Induced Sequence of Activation and Left Ventricular Pump Function in Animals. Pacing and Clinical Electrophysiology, 25, 484-498.
https://doi.org/10.1046/j.1460-9592.2002.00484.x
[57]  Mafi-Rad, M., Luermans, J.G.L.M., Blaauw, Y., Janssen, M., Crijns, H.J., Prinzen, F.W., et al. (2016) Feasibility and Acute Hemodynamic Effect of Left Ventricular Septal Pacing by Transvenous Approach through the Interventricular Septum. Circulation: Arrhythmia and Electrophysiology, 9, e003344.
https://doi.org/10.1161/circep.115.003344
[58]  Heckman, L., Luermans, J., Salden, F., Stipdonk, A.M.W.v., Mafi-Rad, M., Prinzen, F., et al. (2021) Physiology and Practicality of Left Ventricular Septal Pacing. Arrhythmia & Electrophysiology Review, 10, 165-171.
https://doi.org/10.15420/aer.2021.21
[59]  Rademakers, L.M., van Hunnik, A., Kuiper, M., Vernooy, K., van Gelder, B., Bracke, F.A., et al. (2016) A Possible Role for Pacing the Left Ventricular Septum in Cardiac Resynchronization Therapy. JACC: Clinical Electrophysiology, 2, 413-422.
https://doi.org/10.1016/j.jacep.2016.01.010
[60]  Salden, F.C.W.M., Luermans, J.G.L.M., Westra, S.W., Weijs, B., Engels, E.B., Heckman, L.I.B., et al. (2020) Short-term Hemodynamic and Electrophysiological Effects of Cardiac Resynchronization by Left Ventricular Septal Pacing. Journal of the American College of Cardiology, 75, 347-359.
https://doi.org/10.1016/j.jacc.2019.11.040
[61]  Huang, W., Su, L., Wu, S., Xu, L., Xiao, F., Zhou, X., et al. (2017) A Novel Pacing Strategy with Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block. Canadian Journal of Cardiology, 33, 1736.e1-1736.e3.
https://doi.org/10.1016/j.cjca.2017.09.013
[62]  Heckman, L.I.B., Luermans, J.G.L.M., Curila, K., Van Stipdonk, A.M.W., Westra, S., Smisek, R., et al. (2021) Comparing Ventricular Synchrony in Left Bundle Branch and Left Ventricular Septal Pacing in Pacemaker Patients. Journal of Clinical Medicine, 10, Article No. 822.
https://doi.org/10.3390/jcm10040822
[63]  Jastrzębski, M., Kiełbasa, G., Curila, K., Moskal, P., Bednarek, A., Rajzer, M., et al. (2021) Physiology-Based Electrocardiographic Criteria for Left Bundle Branch Capture. Heart Rhythm, 18, 935-943.
https://doi.org/10.1016/j.hrthm.2021.02.021
[64]  Heckman, L., Vijayaraman, P., Luermans, J., Stipdonk, A.M.W., Salden, F., Maass, A.H., et al. (2020) Novel Bradycardia Pacing Strategies. Heart, 106, 1883-1889.
https://doi.org/10.1136/heartjnl-2020-316849
[65]  Curila, K., Jurak, P., Jastrzebski, M., Prinzen, F., Waldauf, P., Halamek, J., et al. (2021) Left Bundle Branch Pacing Compared to Left Ventricular Septal Myocardial Pacing Increases Interventricular Dyssynchrony but Accelerates Left Ventricular Lateral Wall Depolarization. Heart Rhythm, 18, 1281-1289.
https://doi.org/10.1016/j.hrthm.2021.04.025
[66]  Wang, S., Xue, S., Jiang, Z., Hou, X., Zou, F., Yang, W., et al. (2024) Cost‐Effectiveness Ratio Analysis of LBBaP versus BVP in Heart Failure Patients with LBBB. Pacing and Clinical Electrophysiology, 47, 1539-1547.
https://doi.org/10.1111/pace.15077

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133