|
HALP评分与合并糖尿病的心血管疾病人群死亡风险相关性分析:基于NHANES的回顾性队列研究
|
Abstract:
目的:评估血红蛋白、白蛋白、淋巴细胞和血小板评分(HALP评分)与患有糖尿病的心血管疾病人群的全因和心因死亡风险的相关性。方法:基于1999~2018年美国国家健康与营养检查调查(NHANES)数据库,采用自然对数转化后的HALP评分(LnHALP)进行研究。使用加权多变量调整Cox分析、Kaplan-Meier生存曲线分析其与全因和心因特异性死亡率的关系,并通过限制性立方样条(RCS)分析评估非线性关系。结果:最终共纳入2621名参与者,在调整了混杂因素后,加权多因素Cox回归提示,LnHALP每升高1单位,参与者全因死亡率显著降低26% [HR = 0.74, 95%CI: 0.64~0.85],心因死亡率降低33% [HR = 0.67, 95%CI: 0.52~0.87]。与最低三分位数人群相比,LnHALP最高三分位数人群的全因和心因死亡风险分别下降了23% [HR = 0.77, 95%CI: 0.65~0.91]、31% [HR = 0.69, 95%CI: 0.53~0.91]。限制性立方样条分析显示LnHALP评分与死亡风险呈现非线性关系,LnHALP评分与全因和心因死亡风险呈J形曲线。结论:HALP评分与患有糖尿病的心血管疾病人群的全因死亡率和心因死亡率之间独立相关。
Objective: To evaluate the association between hemoglobin, albumin, lymphocyte, and platelet (HALP) score and the risk of all-cause and cardiovascular mortality among patients with diabetes and cardiovascular disease. Methods: This study utilized data from the National Health and Nutrition Examination Survey (NHANES) database from 1999 to 2018. Due to the skewed distribution of HALP scores, we employed the natural logarithm-transformed HALP score (LnHALP) for subsequent analyses. The associations between LnHALP scores and all-cause and cardiovascular-specific mortality were examined using weighted multivariate-adjusted Cox regression analysis and Kaplan-Meier survival curves. Restricted cubic spline (RCS) analysis was performed to evaluate potential non-linear relationships. Results: A total of 2621 participants were included in the final analysis. After adjusting for confounding factors including age, gender, race, poverty-income ratio, education level, hypertension, body weight, estimated glomerular filtration rate (eGFR), chronic kidney disease, hyperlipidemia, smoking, and alcohol consumption, the weighted multivariate Cox regression analysis revealed that each unit increase in LnHALP was associated with a 26% reduction in all-cause mortality risk [HR = 0.74, 95%CI: 0.64~0.85] and a 33% reduction in cardiovascular mortality risk [HR = 0.67, 95%CI: 0.52~0.87]. When participants were stratified into tertiles based on LnHALP scores, those in the highest tertile demonstrated a 23% lower risk of all-cause mortality [HR = 0.77, 95%CI: 0.65~0.91] and a 31% lower risk of cardiovascular mortality [HR = 0.69, 95%CI: 0.53~0.91] compared to those in the lowest tertile. Restricted cubic spline analysis demonstrated a nonlinear relationship between LnHALP score and mortality risk, with J-shaped curves observed between LnHALP score and both all-cause and cardiovascular mortality. Conclusion: The HALP score demonstrates an
[1] | Naghavi, M., Abajobir, A.A., Abbafati, C., Abbas, K.M., Abd-Allah, F., Abera, S.F., et al. (2017) Global, Regional, and National Age-Sex Specific Mortality for 264 Causes of Death, 1980-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet, 390, 1151-1210. https://doi.org/10.1016/s0140-6736(17)32152-9 |
[2] | Kazi, D.S., Elkind, M.S.V., Deutsch, A., Dowd, W.N., Heidenreich, P., Khavjou, O., et al. (2024) Forecasting the Economic Burden of Cardiovascular Disease and Stroke in the United States through 2050: A Presidential Advisory from the American Heart Association. Circulation, 150, e89-e101. https://doi.org/10.1161/cir.0000000000001258 |
[3] | Petrie, J.R., Guzik, T.J. and Touyz, R.M. (2018) Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Canadian Journal of Cardiology, 34, 575-584. https://doi.org/10.1016/j.cjca.2017.12.005 |
[4] | Einarson, T.R., Acs, A., Ludwig, C. and Panton, U.H. (2018) Prevalence of Cardiovascular Disease in Type 2 Diabetes: A Systematic Literature Review of Scientific Evidence from across the World in 2007-2017. Cardiovascular Diabetology, 17, Article No. 83. https://doi.org/10.1186/s12933-018-0728-6 |
[5] | Harding, J.L., Pavkov, M.E., Magliano, D.J., Shaw, J.E. and Gregg, E.W. (2018) Global Trends in Diabetes Complications: A Review of Current Evidence. Diabetologia, 62, 3-16. https://doi.org/10.1007/s00125-018-4711-2 |
[6] | Liang, H., Guo, Y.C., Chen, L.M., Li, M., Han, W.Z., Zhang, X., et al. (2016) Relationship between Fasting Glucose Levels and In-Hospital Mortality in Chinese Patients with Acute Myocardial Infarction and Diabetes Mellitus: A Retrospective Cohort Study. BMC Cardiovascular Disorders, 16, Article No. 156. https://doi.org/10.1186/s12872-016-0331-2 |
[7] | Wang, W., Qiao, J., Zhang, L., Zhang, J., Luo, J., Chen, C., et al. (2024) Prevalence of Very High Cardiovascular Disease Risk in Patients with Type 2 Diabetes Mellitus: A Population‐Based Cross‐Sectional Screening Study. Diabetes, Obesity and Metabolism, 26, 4251-4260. https://doi.org/10.1111/dom.15763 |
[8] | Chen, X., Xue, L., Wang, W., Chen, H., Zhang, W., Liu, K., et al. (2015) Prognostic Significance of the Combination of Preoperative Hemoglobin, Albumin, Lymphocyte and Platelet in Patients with Gastric Carcinoma: A Retrospective Cohort Study. Oncotarget, 6, 41370-41382. https://doi.org/10.18632/oncotarget.5629 |
[9] | Zhao, R., Liang, Z., Chen, K. and Zhu, X. (2023) Nomogram Based on Hemoglobin, Albumin, Lymphocyte and Platelet Score to Predict Overall Survival in Patients with T3-4N0-1 Nasopharyngeal Carcinoma. Journal of Inflammation Research, 16, 1995-2006. https://doi.org/10.2147/jir.s411194 |
[10] | Güç, Z.G., Alacacıoğlu, A., Kalender, M.E., Oflazoğlu, U., Ünal, S., Yıldız, Y., et al. (2022) HALP Score and GNRI: Simple and Easily Accessible Indexes for Predicting Prognosis in Advanced Stage NSCLC Patients. the İzmir Oncology Group (IZOG) Study. Frontiers in Nutrition, 9, Article 905292. https://doi.org/10.3389/fnut.2022.905292 |
[11] | Zhao, Z. and Xu, L. (2023) Prognostic Significance of HALP Score and Combination of Peripheral Blood Multiple Indicators in Patients with Early Breast Cancer. Frontiers in Oncology, 13, Article 1253895. https://doi.org/10.3389/fonc.2023.1253895 |
[12] | Xu, H., Zheng, X., Ai, J. and Yang, L. (2023) Hemoglobin, Albumin, Lymphocyte, and Platelet (HALP) Score and Cancer Prognosis: A Systematic Review and Meta-Analysis of 13,110 Patients. International Immunopharmacology, 114, Article 109496. https://doi.org/10.1016/j.intimp.2022.109496 |
[13] | Tian, M., Li, Y., Wang, X., Tian, X., Pei, L., Wang, X., et al. (2021) The Hemoglobin, Albumin, Lymphocyte, and Platelet (HALP) Score Is Associated with Poor Outcome of Acute Ischemic Stroke. Frontiers in Neurology, 11, Article 610318. https://doi.org/10.3389/fneur.2020.610318 |
[14] | Zheng, Y., Huang, Y. and Li, H. (2023) Hemoglobin Albumin Lymphocyte and Platelet Score and All-Cause Mortality in Coronary Heart Disease: A Retrospective Cohort Study of NHANES Database. Frontiers in Cardiovascular Medicine, 10, Article 1241217. https://doi.org/10.3389/fcvm.2023.1241217 |
[15] | Han, H., Hu, S. and Du, J. (2022) Predictive Value of the Hemoglobin-Albumin-Lymphocyte-Platelet (HALP) Index for ICU Mortality in Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (AECOPD). Internal and Emergency Medicine, 18, 85-96. https://doi.org/10.1007/s11739-022-03132-4 |
[16] | Zhu, B., Liu, Y., Liu, W., Cao, C., Chen, Y., Yi, Y., et al. (2024) Association of Neutrophil-to-Lymphocyte Ratio with All-Cause and Cardiovascular Mortality in CVD Patients with Diabetes or Pre-Diabetes. Scientific Reports, 14, Article No. 24324. https://doi.org/10.1038/s41598-024-74642-8 |
[17] | Pan, H. and Lin, S. (2023) Association of Hemoglobin, Albumin, Lymphocyte, and Platelet Score with Risk of Cerebrovascular, Cardiovascular, and All-Cause Mortality in the General Population: Results from the NHANES 1999-2018. Frontiers in Endocrinology, 14, Article 1173399. https://doi.org/10.3389/fendo.2023.1173399 |
[18] | National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation, 106, 3143-3421. |
[19] | Rovin, B.H., Adler, S.G., Barratt, J., Bridoux, F., Burdge, K.A., Chan, T.M., et al. (2021) KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney International, 100, S1-S276. https://doi.org/10.1016/j.kint.2021.05.021 |
[20] | Levey, A.S., Stevens, L.A., Schmid, C.H., Zhang, Y.L., Castro, A.F., Feldman, H.I., et al. (2009) A New Equation to Estimate Glomerular Filtration Rate. Annals of Internal Medicine, 150, 604-612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006 |
[21] | Liu, L., Gong, B., Wang, W., Xu, K., Wang, K. and Song, G. (2024) Association between Haemoglobin, Albumin, Lymphocytes, and Platelets and Mortality in Patients with Heart Failure. ESC Heart Failure, 11, 1051-1060. https://doi.org/10.1002/ehf2.14662 |
[22] | Fu, J., Yue, X., Zou, Y., Zhang, J., Wang, X. and Zhang, D. (2024) Association of Hemoglobin, Albumin, Lymphocyte, and Platelet Score with Risk of All-Cause and Cause-Specific Mortality among Cancer Survivors: NHANES 1999-2018. Frontiers in Oncology, 14, Article 1402217. https://doi.org/10.3389/fonc.2024.1402217 |
[23] | Rattanasompattikul, M., Molnar, M.Z., Zaritsky, J.J., Hatamizadeh, P., Jing, J., Norris, K.C., et al. (2012) Association of Malnutrition-Inflammation Complex and Responsiveness to Erythropoiesis-Stimulating Agents in Long-Term Hemodialysis Patients. Nephrology Dialysis Transplantation, 28, 1936-1945. https://doi.org/10.1093/ndt/gfs368 |
[24] | Goel, H., Hirsch, J.R., Deswal, A. and Hassan, S.A. (2021) Anemia in Cardiovascular Disease: Marker of Disease Severity or Disease-Modifying Therapeutic Target? Current Atherosclerosis Reports, 23, Article No. 61. https://doi.org/10.1007/s11883-021-00960-1 |
[25] | Matteucci, E., Malvaldi, G., Fagnani, F., Evangelista, I. and Giampietro, O. (2004) Redox Status and Immune Function in Type I Diabetes Families. Clinical and Experimental Immunology, 136, 549-554. https://doi.org/10.1111/j.1365-2249.2004.02470.x |
[26] | Nunez, J., Minana, G., Bodi, V., Nunez, E., Sanchis, J., Husser, O., et al. (2011) Low Lymphocyte Count and Cardiovascular Diseases. Current Medicinal Chemistry, 18, 3226-3233. https://doi.org/10.2174/092986711796391633 |
[27] | Giese, I., Schilloks, M., Degroote, R.L., Weigand, M., Renner, S., Wolf, E., et al. (2021) Chronic Hyperglycemia Drives Functional Impairment of Lymphocytes in Diabetic INSC94Y Transgenic Pigs. Frontiers in Immunology, 11, Article 607473. https://doi.org/10.3389/fimmu.2020.607473 |
[28] | Pittman, R.N. (2011) Elevated Haematocrit—When Too Much of a Good Thing Wreaks Havoc on the Endothelial Surface Layer. The Journal of Physiology, 589, 5339. https://doi.org/10.1113/jphysiol.2011.220640 |
[29] | Reininger, A.J., Bernlochner, I., Penz, S.M., Ravanat, C., Smethurst, P., Farndale, R.W., et al. (2010) A 2-Step Mechanism of Arterial Thrombus Formation Induced by Human Atherosclerotic Plaques. Journal of the American College of Cardiology, 55, 1147-1158. https://doi.org/10.1016/j.jacc.2009.11.051 |
[30] | Schiffrin, E.L. (2013) Immune Mechanisms in Hypertension and Vascular Injury. Clinical Science, 126, 267-274. https://doi.org/10.1042/cs20130407 |
[31] | Panjrath, G.S., Chaudhari, S. and Messerli, F.H. (2012) The J-Point Phenomenon in Aggressive Therapy of Hypertension: New Insights. Current Atherosclerosis Reports, 14, 124-129. https://doi.org/10.1007/s11883-012-0233-4 |
[32] | Henriksen, E.J., Diamond-Stanic, M.K. and Marchionne, E.M. (2011) Oxidative Stress and the Etiology of Insulin Resistance and Type 2 Diabetes. Free Radical Biology and Medicine, 51, 993-999. https://doi.org/10.1016/j.freeradbiomed.2010.12.005 |
[33] | Beckman, J.D. and Sparkenbaugh, E.M. (2023) The Invisible String of Coagulation, Complement, Iron, and Inflammation in Sickle Cell Disease. Current Opinion in Hematology, 30, 153-158. https://doi.org/10.1097/moh.0000000000000773 |
[34] | Franceschi, C. and Campisi, J. (2014) Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 69, S4-S9. https://doi.org/10.1093/gerona/glu057 |
[35] | Cruz-Jentoft, A.J. and Sayer, A.A. (2019) Sarcopenia. The Lancet, 393, 2636-2646. https://doi.org/10.1016/s0140-6736(19)31138-9 |
[36] | Singh, T. and Newman, A.B. (2011) Inflammatory Markers in Population Studies of Aging. Ageing Research Reviews, 10, 319-329. https://doi.org/10.1016/j.arr.2010.11.002 |
[37] | Moramarco, S., Morciano, L., Morucci, L., Messinese, M., Gualtieri, P., Carestia, M., et al. (2020) Epidemiology of Hypoalbuminemia in Hospitalized Patients: A Clinical Matter or an Emerging Public Health Problem? Nutrients, 12, Article 3656. https://doi.org/10.3390/nu12123656 |