|
S100A8/A9在脓毒症和脓毒症相关器官损伤中的研究进展
|
Abstract:
脓毒症是重症监护病房患者死亡的首要原因,它是由入侵感染引起的不受控制的全身反应引起的,导致多个器官和系统的广泛损害。最近,S100A8/A9已成为脓毒症和脓毒症诱导的器官损伤的一种有前景的生物标志物,靶向S100A8/A9似乎可以改善炎症诱导的组织损伤并改善不良结局。S100A8/A9是一种钙结合异二聚体,主要存在于中性粒细胞和单核细胞中,是一种具有促炎和免疫抑制特性的致病分子,在脓毒症的发病机制中至关重要。因此,提高我们对S100A8/A9在脓毒症发展中的病理作用机制的理解,对于推进脓毒症的研究至关重要。本综述讨论了S100A8/A9的生物学特性及其释放机制,总结了S100A8/A9在脓毒症及其相关器官损伤中的重要作用的最新进展,并强调了其作为脓毒症诊断生物标志物和治疗靶点的潜力。
Sepsis, the leading cause of death in intensive care unit patients, is caused by an uncontrolled systemic reaction caused by an invasive infection, resulting in widespread damage to multiple organs and systems. Recently, S100A8/A9 has emerged as a promising biomarker for sepsis and sepsis-induced organ damage, and targeting S100A8/A9 appears to ameliorate inflammation-induced tissue damage and improve poor outcomes. S100A8/A9, a calcium-bound heterodimer predominantly found in neutrophils and monocytes, is a pathogenic molecule with pro-inflammatory and immunosuppressive properties that is critical in the pathogenesis of sepsis. Therefore, improving our understanding of the pathological mechanism of S100A8/A9 in the development of sepsis is essential to advance the research of sepsis. This review discusses the biology of S100A8/A9 and its release mechanism, summarizes recent advances in the important role of S100A8/A9 in sepsis and its associated organ damage, and highlights its potential as a diagnostic biomarker and therapeutic target for sepsis.
[1] | Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. https://doi.org/10.1001/jama.2016.0287 |
[2] | Goodman, C.W. and Brett, A.S. (2017) Gabapentin and Pregabalin for Pain—Is Increased Prescribing a Cause for Concern? New England Journal of Medicine, 377, 411-414. https://doi.org/10.1056/nejmp1704633 |
[3] | Rudd, K.E., Johnson, S.C., Agesa, K.M., Shackelford, K.A., Tsoi, D., Kievlan, D.R., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211. https://doi.org/10.1016/s0140-6736(19)32989-7 |
[4] | Markwart, R., Saito, H., Harder, T., Tomczyk, S., Cassini, A., Fleischmann-Struzek, C., et al. (2020) Epidemiology and Burden of Sepsis Acquired in Hospitals and Intensive Care Units: A Systematic Review and Meta-Analysis. Intensive Care Medicine, 46, 1536-1551. https://doi.org/10.1007/s00134-020-06106-2 |
[5] | Xie, J., Wang, H., Kang, Y., Zhou, L., Liu, Z., Qin, B., et al. (2020) The Epidemiology of Sepsis in Chinese ICUs: A National Cross-Sectional Survey. Critical Care Medicine, 48, e209-e218. https://doi.org/10.1097/ccm.0000000000004155 |
[6] | Evans, L., Rhodes, A., Alhazzani, W., et al. (2021) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Medicine, 47, 1181-1247. https://doi.org/10.1007/s00134-021-06506-y |
[7] | Yao, R., Zhao, P., Li, Z., Liu, Y., Zheng, L., Duan, Y., et al. (2023) Single-Cell Transcriptome Profiling of Sepsis Identifies HLA-DRlowS100Ahigh Monocytes with Immunosuppressive Function. Military Medical Research, 10, Article No. 27. https://doi.org/10.1186/s40779-023-00462-y |
[8] | Delano, M.J. and Ward, P.A. (2016) The Immune System’s Role in Sepsis Progression, Resolution, and Long‐Term Outcome. Immunological Reviews, 274, 330-353. https://doi.org/10.1111/imr.12499 |
[9] | Guo, Q., Zhao, Y., Li, J., Liu, J., Yang, X., Guo, X., et al. (2021) Induction of Alarmin S100A8/A9 Mediates Activation of Aberrant Neutrophils in the Pathogenesis of COVID-19. Cell Host & Microbe, 29, 222-235.e4. https://doi.org/10.1016/j.chom.2020.12.016 |
[10] | Austermann, J., Spiekermann, C. and Roth, J. (2018) S100 Proteins in Rheumatic Diseases. Nature Reviews Rheumatology, 14, 528-541. https://doi.org/10.1038/s41584-018-0058-9 |
[11] | Vogl, T., Stratis, A., Wixler, V., Völler, T., Thurainayagam, S., Jorch, S.K., et al. (2018) Autoinhibitory Regulation of S100A8/S100A9 Alarmin Activity Locally Restricts Sterile Inflammation. Journal of Clinical Investigation, 128, 1852-1866. https://doi.org/10.1172/jci89867 |
[12] | Joshi, A., Schmidt, L.E., Burnap, S.A., Lu, R., Chan, M.V., Armstrong, P.C., et al. (2022) Neutrophil-Derived Protein S100A8/A9 Alters the Platelet Proteome in Acute Myocardial Infarction and Is Associated with Changes in Platelet Reactivity. Arteriosclerosis, Thrombosis, and Vascular Biology, 42, 49-62. https://doi.org/10.1161/atvbaha.121.317113 |
[13] | Rapkiewicz, A.V., Mai, X., Carsons, S.E., Pittaluga, S., Kleiner, D.E., Berger, J.S., et al. (2020) Megakaryocytes and Platelet-Fibrin Thrombi Characterize Multi-Organ Thrombosis at Autopsy in COVID-19: A Case Series. eClinicalMedicine, 24, Article 100434. https://doi.org/10.1016/j.eclinm.2020.100434 |
[14] | Yesudhas, D., Gosu, V., Anwar, M.A. and Choi, S. (2014) Multiple Roles of Toll-Like Receptor 4 in Colorectal Cancer. Frontiers in Immunology, 5, Article 334. https://doi.org/10.3389/fimmu.2014.00334 |
[15] | Adhikari, J., Stephan, J.R., Rempel, D.L., Nolan, E.M. and Gross, M.L. (2020) Calcium Binding to the Innate Immune Protein Human Calprotectin Revealed by Integrated Mass Spectrometry. Journal of the American Chemical Society, 142, 13372-13383. https://doi.org/10.1021/jacs.9b11950 |
[16] | Wang, X., Xu, G., Liu, X., Liu, Y., Zhang, S. and Zhang, Z. (2021) Multiomics: Unraveling the Panoramic Landscapes of SARS-CoV-2 Infection. Cellular & Molecular Immunology, 18, 2313-2324. https://doi.org/10.1038/s41423-021-00754-0 |
[17] | Bai, S., Wang, W., Ye, L., Fang, L., Dong, T., Zhang, R., et al. (2021) IL-17 Stimulates Neutrophils to Release S100A8/A9 to Promote Lung Epithelial Cell Apoptosis in Mycoplasma Pneumoniae-Induced Pneumonia in Children. Biomedicine & Pharmacotherapy, 143, Article 112184. https://doi.org/10.1016/j.biopha.2021.112184 |
[18] | Hiroshima, Y., Hsu, K., Tedla, N., Wong, S.W., Chow, S., Kawaguchi, N., et al. (2017) S100A8/A9 and S100A9 Reduce Acute Lung Injury. Immunology & Cell Biology, 95, 461-472. https://doi.org/10.1038/icb.2017.2 |
[19] | Freise, N., Burghard, A., Ortkras, T., Daber, N., Imam Chasan, A., Jauch, S., et al. (2019) Signaling Mechanisms Inducing Hyporesponsiveness of Phagocytes during Systemic Inflammation. Blood, 134, 134-146. https://doi.org/10.1182/blood.2019000320 |
[20] | van der Poll, T., Shankar-Hari, M. and Wiersinga, W.J. (2021) The Immunology of Sepsis. Immunity, 54, 2450-2464. https://doi.org/10.1016/j.immuni.2021.10.012 |
[21] | Liu, D., Huang, S., Sun, J., Zhang, H., Cai, Q., Gao, C., et al. (2022) Sepsis-Induced Immunosuppression: Mechanisms, Diagnosis and Current Treatment Options. Military Medical Research, 9, Article No. 56. https://doi.org/10.1186/s40779-022-00422-y |
[22] | Jakobsson, G., Papareddy, P., Andersson, H., Mulholland, M., Bhongir, R., Ljungcrantz, I., et al. (2023) Therapeutic S100A8/A9 Blockade Inhibits Myocardial and Systemic Inflammation and Mitigates Sepsis-Induced Myocardial Dysfunction. Critical Care, 27, Article No. 374. https://doi.org/10.1186/s13054-023-04652-x |
[23] | Wang, Q., Long, G., Luo, H., Zhu, X., Han, Y., Shang, Y., et al. (2023) S100A8/A9: An Emerging Player in Sepsis and Sepsis-Induced Organ Injury. Biomedicine & Pharmacotherapy, 168, Article 115674. https://doi.org/10.1016/j.biopha.2023.115674 |
[24] | Ding, Z., Du, F., Averitt V, R.G., Jakobsson, G., Rönnow, C., Rahman, M., et al. (2021) Targeting S100A9 Reduces Neutrophil Recruitment, Inflammation and Lung Damage in Abdominal Sepsis. International Journal of Molecular Sciences, 22, Article 12923. https://doi.org/10.3390/ijms222312923 |
[25] | Marki, A., Buscher, K., Lorenzini, C., Meyer, M., Saigusa, R., Fan, Z., et al. (2020) Elongated Neutrophil-Derived Structures Are Blood-Borne Microparticles Formed by Rolling Neutrophils during Sepsis. Journal of Experimental Medicine, 218, e20200551. https://doi.org/10.1084/jem.20200551 |
[26] | Zhou, Y., Hann, J., Schenten, V., Plançon, S., Bueb, J., Tolle, F., et al. (2021) Role of S100A8/A9 for Cytokine Secretion, Revealed in Neutrophils Derived from ER-Hoxb8 Progenitors. International Journal of Molecular Sciences, 22, Article 8845. https://doi.org/10.3390/ijms22168845 |
[27] | Denning, N., Aziz, M., Gurien, S.D. and Wang, P. (2019) Damps and Nets in Sepsis. Frontiers in Immunology, 10, Article 2536. https://doi.org/10.3389/fimmu.2019.02536 |
[28] | Zhan, X., Wu, R., Kong, X., You, Y., He, K., Sun, X., et al. (2022) Elevated Neutrophil Extracellular Traps by HBV‐Mediated S100A9‐TLR4/RAGE‐ROS Cascade Facilitate the Growth and Metastasis of Hepatocellular Carcinoma. Cancer Communications, 43, 225-245. https://doi.org/10.1002/cac2.12388 |
[29] | Park, I., Kim, M., Choe, K., Song, E., Seo, H., Hwang, Y., et al. (2019) Neutrophils Disturb Pulmonary Microcirculation in Sepsis-Induced Acute Lung Injury. European Respiratory Journal, 53, Article 1800786. https://doi.org/10.1183/13993003.00786-2018 |
[30] | van der Poll, T., van de Veerdonk, F.L., Scicluna, B.P. and Netea, M.G. (2017) The Immunopathology of Sepsis and Potential Therapeutic Targets. Nature Reviews Immunology, 17, 407-420. https://doi.org/10.1038/nri.2017.36 |
[31] | Gong, R., Luo, H., Long, G., Xu, J., Huang, C., Zhou, X., et al. (2023) Integrative Proteomic Profiling of Lung Tissues and Blood in Acute Respiratory Distress Syndrome. Frontiers in Immunology, 14, Article 1158951. https://doi.org/10.3389/fimmu.2023.1158951 |
[32] | Kuipers, M.T., Vogl, T., Aslami, H., Jongsma, G., van den Berg, E., Vlaar, A.P.J., et al. (2013) High Levels of S100A8/A9 Proteins Aggravate Ventilator-Induced Lung Injury via TLR4 Signaling. PLOS ONE, 8, e68694. https://doi.org/10.1371/journal.pone.0068694 |
[33] | Zhao, B., Lu, R., Chen, J., Xie, M., Zhao, X. and Kong, L. (2021) S100A9 Blockade Prevents Lipopolysaccharide-Induced Lung Injury via Suppressing the NLRP3 Pathway. Respiratory Research, 22, Article No. 45. https://doi.org/10.1186/s12931-021-01641-y |
[34] | Lu, F., Hu, F., Qiu, B., Zou, H. and Xu, J. (2022) Identification of Novel Biomarkers in Septic Cardiomyopathy via Integrated Bioinformatics Analysis and Experimental Validation. Frontiers in Genetics, 13, Article 929293. https://doi.org/10.3389/fgene.2022.929293 |
[35] | Wu, F., Zhang, Y., Teng, F., Li, H. and Guo, S. (2023) S100A8/A9 Contributes to Sepsis-Induced Cardiomyopathy by Activating ERK1/2-Drp1-Mediated Mitochondrial Fission and Respiratory Dysfunction. International Immunopharmacology, 115, Article 109716. https://doi.org/10.1016/j.intimp.2023.109716 |
[36] | Tousif, S., Singh, A.P., Umbarkar, P., Galindo, C., Wheeler, N., Toro Cora, A., et al. (2023) Ponatinib Drives Cardiotoxicity by S100A8/A9-NLRP3-IL-1β Mediated Inflammation. Circulation Research, 132, 267-289. https://doi.org/10.1161/circresaha.122.321504 |
[37] | Zhang, L., Wang, X., Wu, L., Huang, L., Zhao, C., Peng, Q., et al. (2016) Diagnostic and Predictive Levels of Calcium-Binding Protein A8 and Tumor Necrosis Factor Receptor-Associated Factor 6 in Sepsis-Associated Encephalopathy: A Prospective Observational Study. Chinese Medical Journal, 129, 1674-1681. https://doi.org/10.4103/0366-6999.185860 |
[38] | Hamasaki, M.Y., Severino, P., Puga, R.D., Koike, M.K., Hernandes, C., Barbeiro, H.V., et al. (2019) Short-Term Effects of Sepsis and the Impact of Aging on the Transcriptional Profile of Different Brain Regions. Inflammation, 42, 1023-1031. https://doi.org/10.1007/s10753-019-00964-9 |
[39] | Liao, Y., Zhou, X., Ji, M., Qiu, L., Chen, X., Gong, C., et al. (2020) S100A9 Upregulation Contributes to Learning and Memory Impairments by Promoting Microglia M1 Polarization in Sepsis Survivor Mice. Inflammation, 44, 307-320. https://doi.org/10.1007/s10753-020-01334-6 |
[40] | Lee, C., Kou, H., Chou, H., Chou, H., Huang, S., Chang, C., et al. (2018) A Combination of SOFA Score and Biomarkers Gives a Better Prediction of Septic AKI and in-Hospital Mortality in Critically Ill Surgical Patients: A Pilot Study. World Journal of Emergency Surgery, 13, Article No. 41. https://doi.org/10.1186/s13017-018-0202-5 |
[41] | Shi, W., Wan, T., Li, H. and Guo, S. (2023) Blockage of S100A8/A9 Ameliorates Septic Nephropathy in Mice. Frontiers in Pharmacology, 14, Article 1172356. https://doi.org/10.3389/fphar.2023.1172356 |
[42] | Zhang, Y., Wu, F., Teng, F., Guo, S. and Li, H. (2023) Deficiency of S100A9 Alleviates Sepsis-Induced Acute Liver Injury through Regulating AKT-AMPK-Dependent Mitochondrial Energy Metabolism. International Journal of Molecular Sciences, 24, Article 2112. https://doi.org/10.3390/ijms24032112 |
[43] | Tang, S., Zhang, X., Duan, Z., Xu, M., Kong, M., Zheng, S., et al. (2023) The Novel Hepatoprotective Mechanisms of Silibinin-Phospholipid Complex against D-GalN/LPS-Induced Acute Liver Injury. International Immunopharmacology, 116, Article 109808. https://doi.org/10.1016/j.intimp.2023.109808 |
[44] | Gao, R., Jia, H., Han, Y., Qian, B., You, P., Zhang, X., et al. (2022) Calprotectin as a Diagnostic Marker for Sepsis: A Meta-Analysis. Frontiers in Cellular and Infection Microbiology, 12, Article 1045636. https://doi.org/10.3389/fcimb.2022.1045636 |
[45] | Chen, L., Long, X., Xu, Q., Tan, J., Wang, G., Cao, Y., et al. (2020) Elevated Serum Levels of S100A8/A9 and HMGB1 at Hospital Admission Are Correlated with Inferior Clinical Outcomes in COVID-19 Patients. Cellular & Molecular Immunology, 17, 992-994. https://doi.org/10.1038/s41423-020-0492-x |
[46] | Chen, J., Tang, S., Ke, S., Cai, J.J., Osorio, D., Golovko, A., et al. (2022) Ablation of Long Noncoding RNA MALAT1 Activates Antioxidant Pathway and Alleviates Sepsis in Mice. Redox Biology, 54, Article 102377. https://doi.org/10.1016/j.redox.2022.102377 |