全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

功能性近红外光谱学在偏头痛中的应用:进展和未来方向
Application of Functional Near-Infrared Spectroscopy in Migraine: Progress and Future Directions

DOI: 10.12677/jcpm.2024.34247, PP. 1725-1733

Keywords: 近红外脑功能成像,偏头痛
Near-Infrared Functional Brain Imaging (fNIRS)
, Migraine

Full-Text   Cite this paper   Add to My Lib

Abstract:

偏头痛是神经内科的一种常见疾病。原发性偏头痛在临床上较为常见,其特点是发作性的、多为单侧的、中度严重的搏动性头痛,通常持续4~72小时,可伴有恶心、呕吐,并可因声光刺激或日常活动而加重。偏头痛的发病机制是一种常见的慢性神经血管疾病,发病率为5%至10%,然而临床诊断率却远远低于发病率。偏头痛的诊断很复杂,这使得偏头痛的临床诊断非常困难。近红外脑功能成像(near-infrared functional brain imaging, fNIRS)因其自身安全、灵活、舒适、操作成本低等优势,越来越受到研究者的关注。它是一种非侵入性的功能成像方法,利用近红外光来测量大脑氧合血红蛋白(OxyHb)和脱氧血红蛋白(deOxyHb)浓度的变化,在临床上可以用这种技术来进行神经系统及相关血管疾病监测和诊断。
Migraine is a common disorder in neurology. Primary migraine is clinically more common and is characterized by episodic, mostly lateral, moderately severe throbbing headaches that usually last 4~72 hours, may be accompanied by nausea and vomiting, and may be exacerbated by acoustic or visual stimuli or daily activities. The pathogenesis of migraine is a common chronic neurovascular disorder with a prevalence of 5% to 10%, yet the clinical diagnosis rate is much lower than the prevalence. The diagnosis of migraine is complex, which makes the clinical diagnosis of migraine very difficult. Near-infrared functional brain imaging is gaining attention from researchers due to its own advantages of safety, flexibility, comfort, and low operating costs. It is a non-invasive functional imaging method that utilizes near-infrared light to measure changes in the brain's oxygenated hemoglobin (OxyHb) and deoxyhemoglobin (deOxyHb) concentrations, another neurovascular disease that can be monitored and diagnosed with this technique.

References

[1]  Scholkmann, F., Kleiser, S., Metz, A.J., Zimmermann, R., Mata Pavia, J., Wolf, U., et al. (2014) A Review on Continuous Wave Functional Near-Infrared Spectroscopy and Imaging Instrumentation and Methodology. NeuroImage, 85, 6-27.
https://doi.org/10.1016/j.neuroimage.2013.05.004

[2]  de Tommaso, M., La Rocca, M., Quitadamo, S.G., Ricci, K., Tancredi, G., Clemente, L., et al. (2022) Central Effects of Galcanezumab in Migraine: A Pilot Study on Steady State Visual Evoked Potentials and Occipital Hemodynamic Response in Migraine Patients. The Journal of Headache and Pain, 23, Article No. 52.
https://doi.org/10.1186/s10194-022-01421-z

[3]  Feigin, V.L., Nichols, E., Alam, T., Bannick, M.S., Beghi, E., Blake, N., et al. (2019) Global, Regional, and National Burden of Neurological Disorders, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18, 459-480.
https://doi.org/10.1016/s1474-4422(18)30499-x

[4]  Robbins, M.S. (2021) Diagnosis and Management of Headache: A Review. JAMA, 325, 1874-1885.
https://doi.org/10.1001/jama.2021.1640

[5]  Steiner, T.J., Stovner, L.J., Jensen, R., Uluduz, D. and Katsarava, Z. (2020) Migraine Remains Second among the World’s Causes of Disability, and First among Young Women: Findings from Gbd2019. The Journal of Headache and Pain, 21, Article No. 137.
https://doi.org/10.1186/s10194-020-01208-0

[6]  Ferrari, M.D., Goadsby, P.J., Burstein, R., Kurth, T., Ayata, C., Charles, A., et al. (2022) Migraine. Nature Reviews Disease Primers, 8, Article No. 2.
https://doi.org/10.1038/s41572-021-00328-4

[7]  Hovaguimian, A. and Roth, J. (2022) Management of Chronic Migraine. BMJ, 379, e067670.
https://doi.org/10.1136/bmj-2021-067670

[8]  Panconesi, A., Bartolozzi, M.L. and Guidi, L. (2009) Migraine Pain: Reflections against Vasodilatation. The Journal of Headache and Pain, 10, 317-325.
https://doi.org/10.1007/s10194-009-0130-6

[9]  Bousser, M. and Welch, K.M.A. (2005) Relation between Migraine and Stroke. The Lancet Neurology, 4, 533-542.
https://doi.org/10.1016/s1474-4422(05)70164-2

[10]  Allais, G., Chiarle, G., Sinigaglia, S., Airola, G., Schiapparelli, P. and Benedetto, C. (2018) Estrogen, Migraine, and Vascular Risk. Neurological Sciences, 39, 11-20.
https://doi.org/10.1007/s10072-018-3333-2

[11]  Parker, P.D., Suryavanshi, P., Melone, M., Sawant-Pokam, P.A., Reinhart, K.M., Kaufmann, D., et al. (2021) Non-canonical Glutamate Signaling in a Genetic Model of Migraine with Aura. Neuron, 109, 611-628.e8.
https://doi.org/10.1016/j.neuron.2020.11.018

[12]  王楚涵. 无先兆型偏头痛患者近红外脑功能成像的临床研究[D]: [硕士学位论文]. 大连: 大连医科大学, 2019.
[13]  Harriott, A.M., Chung, D.Y., Uner, A., Bozdayi, R.O., Morais, A., Takizawa, T., et al. (2020) Optogenetic Spreading Depression Elicits Trigeminal Pain and Anxiety Behavior. Annals of Neurology, 89, 99-110.
https://doi.org/10.1002/ana.25926

[14]  Kramer, D.R., Fujii, T., Ohiorhenuan, I. and Liu, C.Y. (2016) Cortical Spreading Depolarization: Pathophysiology, Implications, and Future Directions. Journal of Clinical Neuroscience, 24, 22-27.
https://doi.org/10.1016/j.jocn.2015.08.004

[15]  Sutherland, H.G., Albury, C.L. and Griffiths, L.R. (2019) Advances in Genetics of Migraine. The Journal of Headache and Pain, 20, Article No. 72.
https://doi.org/10.1186/s10194-019-1017-9

[16]  Chever, O., Zerimech, S., Scalmani, P., Lemaire, L., Pizzamiglio, L., Loucif, A., et al. (2021) Initiation of Migraine-Related Cortical Spreading Depolarization by Hyperactivity of Gabaergic Neurons and Nav1.1 Channels. Journal of Clinical Investigation, 131, e142203.
https://doi.org/10.1172/jci142203

[17]  Borgdorff, P. (2018) Arguments against the Role of Cortical Spreading Depression in Migraine. Neurological Research, 40, 173-181.
https://doi.org/10.1080/01616412.2018.1428406

[18]  Harriott, A.M., Takizawa, T., Chung, D.Y. and Chen, S. (2019) Spreading Depression as a Preclinical Model of Migraine. The Journal of Headache and Pain, 20, Article No. 45.
https://doi.org/10.1186/s10194-019-1001-4

[19]  Major, S., Huo, S., Lemale, C.L., Siebert, E., Milakara, D., Woitzik, J., et al. (2019) Direct Electrophysiological Evidence That Spreading Depolarization-Induced Spreading Depression Is the Pathophysiological Correlate of the Migraine Aura and a Review of the Spreading Depolarization Continuum of Acute Neuronal Mass Injury. GeroScience, 42, 57-80.
https://doi.org/10.1007/s11357-019-00142-7

[20]  Charles, A.C. and Baca, S.M. (2013) Cortical Spreading Depression and Migraine. Nature Reviews Neurology, 9, 637-644.
https://doi.org/10.1038/nrneurol.2013.192

[21]  Ayata, C. (2013) Spreading Depression and Neurovascular Coupling. Stroke, 44, S87-S89.
https://doi.org/10.1161/strokeaha.112.680264

[22]  Auffenberg, E., Hedrich, U.B.S., Barbieri, R., Miely, D., Groschup, B., Wuttke, T.V., et al. (2021) Hyperexcitable Interneurons Trigger Cortical Spreading Depression in an Scn1a Migraine Model. Journal of Clinical Investigation, 131, e142202.
https://doi.org/10.1172/jci142202

[23]  Khan, S., Amin, F.M., Christensen, C.E., Ghanizada, H., Younis, S., Olinger, A.C.R., et al. (2018) Meningeal Contribution to Migraine Pain: A Magnetic Resonance Angiography Study. Brain, 142, 93-102.
https://doi.org/10.1093/brain/awy300

[24]  May, A. and Goadsby, P.J. (1999) The Trigeminovascular System in Humans: Pathophysiologic Implications for Primary Headache Syndromes of the Neural Influences on the Cerebral Circulation. Journal of Cerebral Blood Flow & Metabolism, 19, 115-127.
https://doi.org/10.1097/00004647-199902000-00001

[25]  Puledda, F., Messina, R. and Goadsby, P.J. (2017) An Update on Migraine: Current Understanding and Future Directions. Journal of Neurology, 264, 2031-2039.
https://doi.org/10.1007/s00415-017-8434-y

[26]  Goadsby, P.J., Holland, P.R., Martins-Oliveira, M., Hoffmann, J., Schankin, C. and Akerman, S. (2017) Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiological Reviews, 97, 553-622.
https://doi.org/10.1152/physrev.00034.2015

[27]  Schwedt, T.J. and Dodick, D.W. (2009) Advanced Neuroimaging of Migraine. The Lancet Neurology, 8, 560-568.
https://doi.org/10.1016/s1474-4422(09)70107-3

[28]  Yu, Z., Peng, J., Lv, Y., Zhao, M., Xie, B., Liang, M., et al. (2016) Different Mean Thickness Implicates Involvement of the Cortex in Migraine. Medicine, 95, e4824.
https://doi.org/10.1097/md.0000000000004824

[29]  Pu, S., Nakagome, K., Miura, A., Iwata, M., Nagata, I. and Kaneko, K. (2016) Associations between Depressive Symptoms and Fronto-Temporal Activities during a Verbal Fluency Task in Patients with Schizophrenia. Scientific Reports, 6, Article No. 30685.
https://doi.org/10.1038/srep30685

[30]  Irani, F., Platek, S.M., Bunce, S., Ruocco, A.C. and Chute, D. (2007) Functional near Infrared Spectroscopy (fNIRS): An Emerging Neuroimaging Technology with Important Applications for the Study of Brain Disorders. The Clinical Neuropsychologist, 21, 9-37.
https://doi.org/10.1080/13854040600910018

[31]  Egetemeir, J., Stenneken, P., Koehler, S., Fallgatter, A.J. and Herrmann, M.J. (2011) Exploring the Neural Basis of Real-Life Joint Action: Measuring Brain Activation during Joint Table Setting with Functional Near-Infrared Spectroscopy. Frontiers in Human Neuroscience, 5, Article No. 95.
https://doi.org/10.3389/fnhum.2011.00095

[32]  Yücel, M.A., Selb, J.J., Huppert, T.J., Franceschini, M.A. and Boas, D.A. (2017) Functional near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging. Current Opinion in Biomedical Engineering, 4, 78-86.
https://doi.org/10.1016/j.cobme.2017.09.011

[33]  Izzetoglu, M., Izzetoglu, K., Bunce, S., Ayaz, H., Devaraj, A., Onaral, B., et al. (2005) Functional Near-Infrared Neuroimaging. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13, 153-159.
https://doi.org/10.1109/tnsre.2005.847377

[34]  Shanmugam, N., Verma, R., Sarkar, S., Khanna, P., Sinha, R., Kashyap, L., et al. (2023) Functional Near‐Infrared Spectroscopy Guided Mapping of Frontal Cortex, a Novel Modality for Assessing Emergence Delirium in Children: A Prospective Observational Study. Pediatric Anesthesia, 33, 844-854.
https://doi.org/10.1111/pan.14708

[35]  Liboni, W., Molinari, F., Allais, G., Mana, O., Negri, E., Grippi, G., et al. (2007) Why Do We Need NIRS in Migraine? Neurological Sciences, 28, S222-S224.
https://doi.org/10.1007/s10072-007-0782-4

[36]  Viola, S., Viola, P., Litterio, P., Buongarzone, M.P. and Fiorelli, L. (2012) Stroke Risk and Migraine: Near-Infrared Spectroscopy Study. Neurological Sciences, 33, 173-175.
https://doi.org/10.1007/s10072-012-1077-y

[37]  Lin, C., Barker, J.W., Sparto, P.J., Furman, J.M. and Huppert, T.J. (2017) Functional Near-Infrared Spectroscopy (fNIRS) Brain Imaging of Multi-Sensory Integration during Computerized Dynamic Posturography in Middle-Aged and Older Adults. Experimental Brain Research, 235, 1247-1256.
https://doi.org/10.1007/s00221-017-4893-8

[38]  Taube, W., Gruber, M., Beck, S., Faist, M., Gollhofer, A. and Schubert, M. (2007) Cortical and Spinal Adaptations Induced by Balance Training: Correlation between Stance Stability and Corticospinal Activation. Acta Physiologica, 189, 347-358.
https://doi.org/10.1111/j.1748-1716.2007.01665.x

[39]  Holtzer, R., Epstein, N., Mahoney, J.R., Izzetoglu, M. and Blumen, H.M. (2014) Neuroimaging of Mobility in Aging: A Targeted Review. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 69, 1375-1388.
https://doi.org/10.1093/gerona/glu052

[40]  Mahoney, J.R., Holtzer, R., Izzetoglu, M., Zemon, V., Verghese, J. and Allali, G. (2016) The Role of Prefrontal Cortex during Postural Control in Parkinsonian Syndromes a Functional Near-Infrared Spectroscopy Study. Brain Research, 1633, 126-138.
https://doi.org/10.1016/j.brainres.2015.10.053

[41]  Maidan, I., Nieuwhof, F., Bernad-Elazari, H., Reelick, M.F., Bloem, B.R., Giladi, N., et al. (2016) The Role of the Frontal Lobe in Complex Walking among Patients with Parkinson’s Disease and Healthy Older Adults: An fNIRS Study. Neurorehabilitation and Neural Repair, 30, 963-971.
https://doi.org/10.1177/1545968316650426

[42]  Mayer, J.S., Neimat, J., Folley, B.S., Bourne, S.K., Konrad, P.E., Charles, D., et al. (2016) Deep Brain Stimulation of the Subthalamic Nucleus Alters Frontal Activity during Spatial Working Memory Maintenance of Patients with Parkinson’s Disease. Neurocase, 22, 369-378.
https://doi.org/10.1080/13554794.2016.1197951

[43]  Morishita, T., Higuchi, M., Saita, K., Tsuboi, Y., Abe, H. and Inoue, T. (2016) Changes in Motor-Related Cortical Activity Following Deep Brain Stimulation for Parkinson’s Disease Detected by Functional near Infrared Spectroscopy: A Pilot Study. Frontiers in Human Neuroscience, 10, Article No. 629.
https://doi.org/10.3389/fnhum.2016.00629

[44]  Sun, J., Liu, X., Shen, C., Zhang, X., Sun, G., Feng, K., et al. (2017) Reduced Prefrontal Activation during Verbal Fluency Task in Chronic Insomnia Disorder: A Multichannel Near-Infrared Spectroscopy Study. Neuropsychiatric Disease and Treatment, 13, 1723-1731.
https://doi.org/10.2147/ndt.s136774

[45]  Falk, T.H., Guirgis, M., Power, S. and Chau, T.T. (2011) Taking Nirs-Bcis Outside the Lab: Towards Achieving Robustness against Environment Noise. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19, 136-146.
https://doi.org/10.1109/tnsre.2010.2078516

[46]  Tse, C., Gordon, B.A., Fabiani, M. and Gratton, G. (2010) Frequency Analysis of the Visual Steady-State Response Measured with the Fast Optical Signal in Younger and Older Adults. Biological Psychology, 85, 79-89.
https://doi.org/10.1016/j.biopsycho.2010.05.007

[47]  Tan, C.H., Low, K.A., Kong, T., Fletcher, M.A., Zimmerman, B., Maclin, E.L., et al. (2017) Mapping Cerebral Pulse Pressure and Arterial Compliance over the Adult Lifespan with Optical Imaging. PLOS ONE, 12, e0171305.
https://doi.org/10.1371/journal.pone.0171305

[48]  Fabiani, M., Low, K.A., Tan, C., Zimmerman, B., Fletcher, M.A., Schneider‐Garces, N., et al. (2014) Taking the Pulse of Aging: Mapping Pulse Pressure and Elasticity in Cerebral Arteries with Optical Methods. Psychophysiology, 51, 1072-1088.
https://doi.org/10.1111/psyp.12288

[49]  Dong, S. and Jeong, J. (2019) Onset Classification in Hemodynamic Signals Measured during Three Working Memory Tasks Using Wireless Functional Near-Infrared Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 25, Article ID: 7102211.
https://doi.org/10.1109/jstqe.2018.2883890

[50]  Afkhami, R.G., Walker, F.R., Ramadan, S., et al. (2020) A Dynamic Model of Brain Hemodynamics in Near-Infrared Spectroscopy. IEEE Transactions on Biomedical Engineering, 67, 2103-2109.
[51]  Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., et al. (2018) The Present and Future Use of Functional Near‐Infrared Spectroscopy (fNIRS) for Cognitive Neuroscience. Annals of the New York Academy of Sciences, 1464, 5-29.
https://doi.org/10.1111/nyas.13948

[52]  Vitorio, R., Stuart, S., Rochester, L., Alcock, L. and Pantall, A. (2017) fNIRS Response during Walking—Artefact or Cortical Activity? A Systematic Review. Neuroscience & Biobehavioral Reviews, 83, 160-172.
https://doi.org/10.1016/j.neubiorev.2017.10.002

[53]  Crum II, J.E. (2020) Future Applications of Real-World Neuroimaging to Clinical Psychology. Psychological Reports, 124, 2403-2426.
https://doi.org/10.1177/0033294120926669

[54]  Saliba, J., Bortfeld, H., Levitin, D.J. and Oghalai, J.S. (2016) Functional Near-Infrared Spectroscopy for Neuroimaging in Cochlear Implant Recipients. Hearing Research, 338, 64-75.
https://doi.org/10.1016/j.heares.2016.02.005

[55]  Kim, H.Y., Seo, K., Jeon, H.J., Lee, U. and Lee, H. (2017) Application of Functional Near-Infrared Spectroscopy to the Study of Brain Function in Humans and Animal Models. Molecules and Cells, 40, 523-532.
https://doi.org/10.14348/molcells.2017.0153

[56]  Ehlis, A., Schneider, S., Dresler, T. and Fallgatter, A.J. (2014) Application of Functional Near-Infrared Spectroscopy in Psychiatry. NeuroImage, 85, 478-488.
https://doi.org/10.1016/j.neuroimage.2013.03.067

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133