全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基因组学在糖尿病肾病生物标志物应用中的研究进展
Advances in the Use of Genomics as a Biomarker for Diabetic Nephropathy

DOI: 10.12677/acm.2024.14123112, PP. 518-526

Keywords: 基因组学,糖尿病肾病,早期诊断,生物标志物
Genomics
, Diabetic Kidney Disease, Early Diagnosis, Biomarkers

Full-Text   Cite this paper   Add to My Lib

Abstract:

糖尿病肾病(diabetic kidney disease, DKD)是糖尿病最普遍的合并症,同时也是终末期肾病的主要原因,已成为全球公共卫生问题。DKD的发病机制复杂,现有临床诊断指标存在不足,因而挖掘DKD新型生物标志物具有重要意义。本文基于基因组学技术的综合分析,从糖尿病肾病诊断预测和治疗靶点两个方面出发,对基因组学在糖尿病肾病生物标志物研究中的应用进行综述。
Diabetic kidney disease (DKD) is the most common comorbidity of diabetes mellitus and the main cause of end-stage renal disease (ESRD), which has become a global public health problem. The pathogenesis of DKD is complex, and the existing clinical diagnostic indexes are insufficient, so it is of great significance to explore the novel biomarkers of DKD. Based on the comprehensive analysis of genomics technology, this paper reviews the application of genomics in the study of biomarkers for diabetic kidney disease from the aspects of diagnostic prediction and therapeutic targets of diabetic kidney disease.

References

[1]  Tuttle, K.R., Wong, L., St. Peter, W., Roberts, G., Rangaswami, J., Mottl, A., et al. (2022) Moving from Evidence to Implementation of Breakthrough Therapies for Diabetic Kidney Disease. Clinical Journal of the American Society of Nephrology, 17, 1092-1103.
https://doi.org/10.2215/cjn.02980322
[2]  Tuttle, K.R., Agarwal, R., Alpers, C.E., Bakris, G.L., Brosius, F.C., Kolkhof, P., et al. (2022) Molecular Mechanisms and Therapeutic Targets for Diabetic Kidney Disease. Kidney International, 102, 248-260.
https://doi.org/10.1016/j.kint.2022.05.012
[3]  Johansen, K.L., Chertow, G.M., Foley, R.N., et al. (2021) US Renal Data System 2020 Annual Data Report: Epidemiology of Kidney Disease in the United States. American Journal of Kidney Diseases, 77, A7-A8.
[4]  Jin, Q., Luk, A.O., Lau, E.S.H., et al. (2022) Nonalbuminuric Diabetic Kidney Disease and Risk of All-Cause Mortality and Cardiovascular and Kidney Outcomes in Type 2 Diabetes: Findings from the Hong Kong Diabetes Biobank. American Journal of Kidney Diseases, 80, 196-206.e1.
[5]  Zhang, J. (2023) What Has Genomics Taught an Evolutionary Biologist? Genomics, Proteomics & Bioinformatics, 21, 1-12.
https://doi.org/10.1016/j.gpb.2023.01.005
[6]  Stephan, T., Burgess, S.M., Cheng, H., Danko, C.G., Gill, C.A., Jarvis, E.D., et al. (2022) Darwinian Genomics and Diversity in the Tree of Life. Proceedings of the National Academy of Sciences of the United States of America, 119, e2115644119.
https://doi.org/10.1073/pnas.2115644119
[7]  Rhee, E.P. (2018) How Omics Data Can Be Used in Nephrology. American Journal of Kidney Diseases, 72, 129-135.
https://doi.org/10.1053/j.ajkd.2017.12.008
[8]  Liu, S., Ma, D., Zhang, G., Cao, S., Li, B., et al. (2024) Nanopore-Based Full-Length Transcriptome Sequencing for Understanding the Underlying Molecular Mechanisms of Rapid and Slow Progression of Diabetes Nephropathy. BMC Medical Genomics, 17, Article No. 246.
https://doi.org/10.1186/s12920-024-02006-2
[9]  Gholaminejad, A., Fathalipour, M. and Roointan, A. (2021) Comprehensive Analysis of Diabetic Nephropathy Expression Profile Based on Weighted Gene Co-Expression Network Analysis Algorithm. BMC Nephrology, 22, Article No. 245.
https://doi.org/10.1186/s12882-021-02447-2
[10]  Fatumo, S., Chikowore, T., Choudhury, A., Ayub, M., Martin, A.R. and Kuchenbaecker, K. (2022) A Roadmap to Increase Diversity in Genomic Studies. Nature Medicine, 28, 243-250.
https://doi.org/10.1038/s41591-021-01672-4
[11]  Lin, B., Hui, J. and Mao, H. (2021) Nanopore Technology and Its Applications in Gene Sequencing. Biosensors, 11, Article 214.
https://doi.org/10.3390/bios11070214
[12]  Kumar, K.R., Cowley, M.J. and Davis, R.L. (2019) Next-Generation Sequencing and Emerging Technologies. Seminars in Thrombosis and Hemostasis, 45, 661-673.
https://doi.org/10.1055/s-0039-1688446
[13]  Ozercan, H.I., Ileri, A.M., Ayday, E. and Alkan, C. (2018) Realizing the Potential of Blockchain Technologies in Genomics. Genome Research, 28, 1255-1263.
https://doi.org/10.1101/gr.207464.116
[14]  Straiton, J., Free, T., Sawyer, A. and Martin, J. (2019) From Sanger Sequencing to Genome Databases and Beyond. BioTechniques, 66, 60-63.
https://doi.org/10.2144/btn-2019-0011
[15]  Zhu, C., Yang, G., Ghulam, M., Li, L. and Qu, F. (2019) Evolution of Multi-Functional Capillary Electrophoresis for High-Efficiency Selection of Aptamers. Biotechnology Advances, 37, Article ID: 107432.
https://doi.org/10.1016/j.biotechadv.2019.107432
[16]  Wang, Y., Zhao, Y., Bollas, A., Wang, Y. and Au, K.F. (2021) Nanopore Sequencing Technology, Bioinformatics and Applications. Nature Biotechnology, 39, 1348-1365.
https://doi.org/10.1038/s41587-021-01108-x
[17]  Fralick, M., Jenkins, A.J., Khunti, K., Mbanya, J.C., Mohan, V. and Schmidt, M.I. (2022) Global Accessibility of Therapeutics for Diabetes Mellitus. Nature Reviews Endocrinology, 18, 199-204.
https://doi.org/10.1038/s41574-021-00621-y
[18]  Al-Dabet, M.M., Shahzad, K., Elwakiel, A., Sulaj, A., Kopf, S., Bock, F., et al. (2022) Reversal of the Renal Hyperglycemic Memory in Diabetic Kidney Disease by Targeting Sustained Tubular P21 Expression. Nature Communications, 13, Article No. 5062.
https://doi.org/10.1038/s41467-022-32477-9
[19]  Sandholm, N., Cole, J.B., Nair, V., Sheng, X., Liu, H., Ahlqvist, E., et al. (2022) Genome-Wide Meta-Analysis and Omics Integration Identifies Novel Genes Associated with Diabetic Kidney Disease. Diabetologia, 65, 1495-1509.
https://doi.org/10.1007/s00125-022-05735-0
[20]  Hu, S., Han, R., Chen, L., Qin, W., Xu, X., Shi, J., et al. (2020) Upregulated LRRC55 Promotes BK Channel Activation and Aggravates Cell Injury in Podocytes. Journal of Experimental Medicine, 218, e20192373.
https://doi.org/10.1084/jem.20192373
[21]  Lay, A.C., Barrington, A.F., Hurcombe, J.A., Ramnath, R.D., Graham, M., Lewis, P.A., et al. (2020) A Role for NPY-NPY2R Signaling in Albuminuric Kidney Disease. Proceedings of the National Academy of Sciences, 117, 15862-15873.
https://doi.org/10.1073/pnas.2004651117
[22]  Liu, J., Duan, G., Yang, W., Zhang, S., Liu, F., Peng, Y., et al. (2023) Identification of Transcription Factors Related to Diabetic Tubulointerstitial Injury. Journal of Translational Medicine, 21, Article No. 225.
https://doi.org/10.1186/s12967-023-04069-8
[23]  Wei, L., Gao, J., Wang, L., Tao, Q. and Tu, C. (2023) Multi-omics Analysis Reveals the Potential Pathogenesis and Therapeutic Targets of Diabetic Kidney Disease. Human Molecular Genetics, 33, 122-137.
https://doi.org/10.1093/hmg/ddad166
[24]  Shen, Y., Chen, W., Han, L., Bian, Q., Fan, J., Cao, Z., et al. (2021) VEGF-B Antibody and Interleukin-22 Fusion Protein Ameliorates Diabetic Nephropathy through Inhibiting Lipid Accumulation and Inflammatory Responses. Acta Pharmaceutica Sinica B, 11, 127-142.
https://doi.org/10.1016/j.apsb.2020.07.002
[25]  张志蓉, 韩伟霞, 王晨. 糖尿病肾病分子机制的研究新进展[J]. 中华肾病研究电子杂志, 2021, 10(2): 90-95.
[26]  Tziastoudi, M., Cholevas, C., Theoharides, T.C. and Stefanidis, I. (2021) Meta-Analysis and Bioinformatics Detection of Susceptibility Genes in Diabetic Nephropathy. International Journal of Molecular Sciences, 23, Article 20.
https://doi.org/10.3390/ijms23010020
[27]  Du, L., Chen, Y., Shi, J., Yu, X., Zhou, J., Wang, X., et al. (2023) Inhibition of S100A8/A9 Ameliorates Renal Interstitial Fibrosis in Diabetic Nephropathy. Metabolism, 144, Article ID: 155376.
https://doi.org/10.1016/j.metabol.2022.155376
[28]  Liu, Y., Uruno, A., Saito, R., Matsukawa, N., Hishinuma, E., Saigusa, D., et al. (2022) Nrf2 Deficiency Deteriorates Diabetic Kidney Disease in Akita Model Mice. Redox Biology, 58, Article ID: 102525.
https://doi.org/10.1016/j.redox.2022.102525
[29]  Yan, M., Li, W., Wei, R., Li, S., Liu, Y., Huang, Y., et al. (2023) Identification of Pyroptosis-Related Genes and Potential Drugs in Diabetic Nephropathy. Journal of Translational Medicine, 21, Article No. 490.
https://doi.org/10.1186/s12967-023-04350-w
[30]  Liu, S., Gui, Y., Wang, M.S., Zhang, L., Xu, T., Pan, Y., et al. (2021) Serum Integrative Omics Reveals the Landscape of Human Diabetic Kidney Disease. Molecular Metabolism, 54, Article ID: 101367.
https://doi.org/10.1016/j.molmet.2021.101367
[31]  Yang, J., Liu, D. and Liu, Z. (2022) Integration of Metabolomics and Proteomics in Exploring the Endothelial Dysfunction Mechanism Induced by Serum Exosomes from Diabetic Retinopathy and Diabetic Nephropathy Patients. Frontiers in Endocrinology, 13, Article 830466.
https://doi.org/10.3389/fendo.2022.830466
[32]  Zhao, T., Cheng, F., Zhan, D., Li, J., Zheng, C., Lu, Y., et al. (2023) The Glomerulus Multiomics Analysis Provides Deeper Insights into Diabetic Nephropathy. Journal of Proteome Research, 22, 1779-1789.
https://doi.org/10.1021/acs.jproteome.2c00794
[33]  Zhang, C., Hansen, M.E.B. and Tishkoff, S.A. (2022) Advances in Integrative African Genomics. Trends in Genetics, 38, 152-168.
https://doi.org/10.1016/j.tig.2021.09.013
[34]  Hindorff, L.A., Bonham, V.L., Brody, L.C., Ginoza, M.E.C., Hutter, C.M., Manolio, T.A., et al. (2017) Prioritizing Diversity in Human Genomics Research. Nature Reviews Genetics, 19, 175-185.
https://doi.org/10.1038/nrg.2017.89

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133