This study provides an in-depth exploration of seaweed biodiversity in Nigeria’s coastal waters, a largely unexplored area for marine resources. There is a dearth of sufficient data on seaweed biodiversity in Nigeria. The research aimed to assess the diversity and distribution of seaweeds in this region. Seaweed samples were collected by hand, using scrapers, at low tide from four stations identified by local fisherfolk and commercial divers. These samples were analyzed in the laboratory for species identification. A total of 39 seaweed taxa were identified, with Rhodophyta (red algae) being the most abundant (74%), followed by Chlorophyta (green algae) (21%) and Heterokontophyta (brown algae) (5%). The highest biomass species included Grateloupia sp., Chaetomorpha antennina, Gracilaria sp., Ceratodictyon variabile, Cladophora sp., Gelidium pusillum, Ulva sp., Blidingia minima, and Caloglossa leprieurii. Species abundance was highest on breakwater rocks and on the bodies of anchored or sunken vessels, while sandy beaches exhibited lower abundance. The findings reveal significant potential for Nigeria’s seaweed in aquaculture, climate change mitigation, and biotechnology. The study recommends further molecular research, expansion of sampling areas, and the development of sustainable seaweed cultivation practices to support Nigeria’s blue economy.
References
[1]
Cooley, S., Schoeman, D., Bopp, L., Boyd, P., Donner, S., Kiessling, W., Martinetto, P., et al. (2022) Oceans and Coastal Ecosystems and Their Services. Cambridge University Press, 379-550.
[2]
Adarshan, S., Sree, V.S.S., Muthuramalingam, P., Nambiar, K.S., Sevanan, M., Satish, L., et al. (2023) Understanding Macroalgae: A Comprehensive Exploration of Nutraceutical, Pharmaceutical, and Omics Dimensions. Plants, 13, Article No. 113. https://doi.org/10.3390/plants13010113
[3]
Guiry, M.D. (2010) AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. http://www.algaebase.org/
[4]
Sode, S., Bruhn, A., Balsby, T.J.S., Larsen, M.M., Gotfredsen, A. and Rasmussen, M.B. (2013) Bioremediation of Reject Water from Anaerobically Digested Waste Water Sludge with Macroalgae (Ulva lactuca, Chlorophyta). BioresourceTechnology, 146, 426-435. https://doi.org/10.1016/j.biortech.2013.06.062
[5]
Wei, Z., You, J., Wu, H., Yang, F., Long, L., Liu, Q., et al. (2017) Bioremediation Using Gracilaria lemaneiformis to Manage the Nitrogen and Phosphorous Balance in an Integrated Multi-Trophic Aquaculture System in Yantian Bay, China. MarinePollutionBulletin, 121, 313-319. https://doi.org/10.1016/j.marpolbul.2017.04.034
[6]
Bilanovic, D., Andargatchew, A., Kroeger, T. and Shelef, G. (2009) Freshwater and Marine Microalgae Sequestering of CO2 at Different C and N Concentrations—Response Surface Methodology Analysis. Energy Conversion and Management, 50, 262-267. https://doi.org/10.1016/j.enconman.2008.09.024
[7]
N’Yeurt, A.D.R., Chynoweth, D.P., Capron, M.E., Stewart, J.R. and Hasan, M.A. (2012) Negative Carbon via Ocean Afforestation. ProcessSafetyandEnvironmentalProtection, 90, 467-474. https://doi.org/10.1016/j.psep.2012.10.008
[8]
Lian, Y., Wang, R., Zheng, J., Chen, W., Chang, L., Li, C., et al. (2023) Carbon Sequestration Assessment and Analysis in the Whole Life Cycle of Seaweed. EnvironmentalResearchLetters, 18, Article ID: 074013. https://doi.org/10.1088/1748-9326/acdae9
[9]
Yong, W.T.L., Thien, V.Y., Rupert, R. and Rodrigues, K.F. (2022) Seaweed: A Potential Climate Change Solution. RenewableandSustainableEnergyReviews, 159, Article ID: 112222. https://doi.org/10.1016/j.rser.2022.112222
[10]
Farghali, M., Mohamed, I.M.A., Osman, A.I. and Rooney, D.W. (2022) Seaweed for Climate Mitigation, Wastewater Treatment, Bioenergy, Bioplastic, Biochar, Food, Pharmaceuticals, and Cosmetics: A Review. EnvironmentalChemistryLetters, 21, 97-152. https://doi.org/10.1007/s10311-022-01520-y
[11]
Boubonari, T., Malea, P. and Kevrekidis, T. (2008) The Green Seaweed Ulvarigida as a Bioindicator of Metals (Zn, Cu, Pb and Cd) in a Low-Salinity Coastal Environment. Botanica Marina, 51, 472-484. https://doi.org/10.1515/bot.2008.059
[12]
McHugh, D.J. (2003) Seaweeds Uses as Human Foods. A Guide to the Seaweed Industry. FAO Fisheries Technical Paper (FAO), 441. https://openknowledge.fao.org/handle/20.500.14283/Y4765E
[13]
Lomartire, S., Marques, J.C. and Gonçalves, A.M.M. (2021) An Overview to the Health Benefits of Seaweeds Consumption. MarineDrugs, 19, Article No. 341. https://doi.org/10.3390/md19060341
[14]
Klnc, B., Cirik, S., Turan, G., Tekogul, H. and Koru, E. (2013) Seaweeds for Food and Industrial Applications. In: Muzzalupo, I., Ed., Food Industry, InTech Open, 735-748. https://doi.org/10.5772/53172
[15]
Jayakody, M.M., Vanniarachchy, M.P.G. and Wijesekara, I. (2022) Seaweed Derived Alginate, Agar, and Carrageenan Based Edible Coatings and Films for the Food Industry: A Review. JournalofFoodMeasurementandCharacterization, 16, 1195-1227. https://doi.org/10.1007/s11694-021-01277-y
[16]
Orbitshub. Port of Lagos: Economic Impact, Infrastructure, and Future. https://orbitshub.com/port-of-lagos-economic-impact-infrastructure-and-future/
[17]
Ekpo, E.I. (2012) Impact of Shipping on Nigerian Economy: Implications for Sustainable Development. Journal of Educational and Social Research, 2, 107-117.
[18]
Croitoru, L., Miranda, J.J., Khattabi, A. and Lee, J.J. (2020) The Cost of Coastal Zone Degradation in Nigeria: Cross River, Delta and Lagos States. World Bank Group. https://hdl.handle.net/10986/34758
[19]
Anderson, R.J., Stegenga, H. and Bolton, J.J. (2016) Seaweeds of the South African South Coast. World Wide Web Electronic Publication. http://southafrseaweeds.uct.ac.Za
[20]
Fakoya, K.A., Owodeinde, F.G., Akintola, S.L., Adewolu, M.A., Abass, M.A. and Ndimele, P.E. (2010) An Exposition on Potential Seaweed Resources for Exploitation, Culture and Utilization in West Africa: A Case Study of Nigeria. JournalofFisheriesandAquaticScience, 6, 37-47. https://doi.org/10.3923/jfas.2011.37.47
[21]
Kalvas, A. and Kautsky, L. (1993) Geographical Variation in Fucusvesiculosus Morphology in the Baltic and North Seas. EuropeanJournalofPhycology, 28, 85-91. https://doi.org/10.1080/09670269300650141
[22]
Miller, S.M., Hurd, C.L. and Wing, S.R. (2011) Variations in Growth, Erosion, Productivity, and Morphology of Ecklonia radiata (Alariaceae; Laminariales) along a Fjord in Southern New Zealand. JournalofPhycology, 47, 505-516. https://doi.org/10.1111/j.1529-8817.2011.00966.x
[23]
Díaz-Tapia, P., Maggs, C.A., Nelson, W., Macaya, E.C. and Verbruggen, H. (2019) Reassessment of the Genus Lophurella (Rhodomelaceae, Rhodophyta) from Australia and New Zealand Reveals Four Cryptic Species. EuropeanJournalofPhycology, 55, 113-128. https://doi.org/10.1080/09670262.2019.1659419
[24]
Blanchette, C.A. (1997) Size and Survival of Intertidal Plants in Response to Wave Action: A Case Study with Fucusgardneri. Ecology, 78, 1563-1578. https://doi.org/10.1890/0012-9658(1997)078[1563:sasoip]2.0.co;2
[25]
Blanchette, C., Miner, B. and Gaines, S. (2002) Geographic Variability in Form, Size and Survival of Egregia menziesii around Point Conception, California. MarineEcologyProgressSeries, 239, 69-82. https://doi.org/10.3354/meps239069
[26]
Duggins, D., Eckman, J., Siddon, C. and Klinger, T. (2003) Population, Morphometric and Biomechanical Studies of Three Understory Kelps along a Hydrodynamic Gradient. MarineEcologyProgressSeries, 265, 57-76. https://doi.org/10.3354/meps265057
[27]
Wolcott, B. (2007) Mechanical Size Limitation and Life-History Strategy of an Intertidal Seaweed. MarineEcologyProgressSeries, 338, 1-10. https://doi.org/10.3354/meps338001
[28]
Gouveia, C., Kreusch, M., Schmidt, É.C., Felix, M.R.D.L., Osorio, L.K.P., Pereira, D.T., et al. (2013) The Effects of Lead and Copper on the Cellular Architecture and Metabolism of the Red Alga Gracilariadomingensis. MicroscopyandMicroanalysis, 19, 513-524. https://doi.org/10.1017/s1431927613000317
[29]
Sampath-Wiley, P., Neefus, C.D. and Jahnke, L.S. (2008) Seasonal Effects of Sun Exposure and Emersion on Intertidal Seaweed Physiology: Fluctuations in Antioxidant Contents, Photosynthetic Pigments and Photosynthetic Efficiency in the Red Alga Porphyra umbilicalis Kützing (Rhodophyta, Bangiales). JournalofExperimentalMarineBiologyandEcology, 361, 83-91. https://doi.org/10.1016/j.jembe.2008.05.001
[30]
Stegenga, H. (2011) Sri Lankan Seaweeds: Methodologies and Field Guide to the Dominant Species. BotanicaMarina, 54, 109. https://doi.org/10.1515/bot.2011.004
[31]
Ali, A., Malik, S., Zaidi, A.Z., Ahmad, N., Shafique, S., Aftab, M.N., et al. (2019) Standing Stock of Seaweeds in Submerged Habitats along the Karachi Coast, Pakistan: An Alternative Source of Livelihood for Coastal Communities. PakistanJournalofBotany, 51, 1819-1830. https://doi.org/10.30848/pjb2019-5(2)
[32]
Abdullah Al, M., Akhtar, A., Rahman, M.F., Kamal, A.H.M., Karim, N.U. and Hassan, M.L. (2020) Habitat Structure and Diversity Patterns of Seaweeds in the Coastal Waters of Saint Martin’s Island, Bay of Bengal, Bangladesh. RegionalStudiesinMarineScience, 33, Article ID: 100959. https://doi.org/10.1016/j.rsma.2019.100959
[33]
Li, X., Wang, K., Zhang, S. and Feng, M. (2021) Distribution and Flora of Seaweed Beds in the Coastal Waters of China. Sustainability, 13, Article No. 3009. https://doi.org/10.3390/su13063009
[34]
Bashir, F., Abbas, A., Shaukat, S.S., Siddiqui, M.F. and Qureshi, I.A. (2022) Distribution and Diversity of Marine Algae of Sindh Coastal Area: α, β and γ Diversity. PakistanJournalofBotany, 54, 2377-2382. https://doi.org/10.30848/pjb2022-6(5)
[35]
Zongo, S.B., Ngohang, F.E., Mabert, B.D.C.K., Nzaba, E.N., Djounga, F.A., Ondo, J.P., et al. (2022) The Marine Benthic Algae Diversity of Gabon: Case of the Rocky Foreshore of Cap Estérias. OpenJournalofMarineScience, 12, 127-140. https://doi.org/10.4236/ojms.2022.124008
[36]
Saeedi, H., Warren, D. and Brandt, A. (2022) The Environmental Drivers of Benthic Fauna Diversity and Community Composition. FrontiersinMarineScience, 9, Article 804019. https://doi.org/10.3389/fmars.2022.804019
[37]
Liu, Y., Zhong, K., Jueterbock, A., Satoshi, S., Choi, H., Weinberger, F., et al. (2022) The Invasive Alga Gracilariavermiculophylla in the Native Northwest Pacific under Ocean Warming: Southern Genetic Consequence and Northern Range Expansion. FrontiersinMarineScience, 9, Article 983685. https://doi.org/10.3389/fmars.2022.983685
[38]
Yow, Y., Lim, P. and Phang, S. (2010) Genetic Diversity of Gracilaria changii (Gracilariaceae, Rhodophyta) from West Coast, Peninsular Malaysia Based on Mitochondrial Cox1 Gene Analysis. JournalofAppliedPhycology, 23, 219-226. https://doi.org/10.1007/s10811-010-9535-5
[39]
Mathieson, A.C., Dawes, C.J., Pederson, J., Gladych, R.A. and Carlton, J.T. (2007) The Asian Red Seaweed Grateloupiaturuturu (Rhodophyta) Invades the Gulf of Maine. BiologicalInvasions, 10, 985-988. https://doi.org/10.1007/s10530-007-9176-z
[40]
Hassaan, M.A. and El Nemr, A. (2021) Ballast Water Definition, Components, Aquatic Invasive Species, Control and Management and Treatment Technologies. In: Inamuddin, Ahamed, M.I., Lichtfouse, E. and Altalhi, T., Eds., Remediation of Heavy Metals, Springer, 289-304. https://doi.org/10.1007/978-3-030-80334-6_11
[41]
Hewitt, C.L., Campbell, M.L. and Schaffelke, B. (2007) Introductions of Seaweeds: Accidental Transfer Pathways and Mechanisms. Botanica Marina, 50, 326-337. https://doi.org/10.1515/bot.2007.038
[42]
Carlton, J.T., Geller, J.B., Reaka-Kudla, M.L. and Norse, E.A. (1999) Historical Extinctions in the Sea. AnnualReviewofEcologyandSystematics, 30, 515-538. https://doi.org/10.1146/annurev.ecolsys.30.1.515
[43]
Minchin, D. and Gollasch, S. (2003) Fouling and Ships’ Hulls: How Changing Circumstances and Spawning Events May Result in the Spread of Exotic Species. Biofouling, 19, 111-122. https://doi.org/10.1080/0892701021000057891
[44]
Williams, S.L. and Smith, J.E. (2007) A Global Review of the Distribution, Taxonomy, and Impacts of Introduced Seaweeds. AnnualReviewofEcology, Evolution, andSystematics, 38, 327-359. https://doi.org/10.1146/annurev.ecolsys.38.091206.095543
[45]
Schaffelke, B. and Hewitt, C.L. (2007) Impacts of Introduced Seaweeds. Botanica Marina, 50, 397-417. https://doi.org/10.1515/bot.2007.044
[46]
Sylvester, F., Kalaci, O., Leung, B., Lacoursière‐Roussel, A., Murray, C.C., Choi, F.M., et al. (2011) Hull Fouling as an Invasion Vector: Can Simple Models Explain a Complex Problem? JournalofAppliedEcology, 48, 415-423. https://doi.org/10.1111/j.1365-2664.2011.01957.x
[47]
Steneck, R.S., Graham, M.H., Bourque, B.J., Corbett, D., Erlandson, J.M., Estes, J.A., et al. (2002) Kelp Forest Ecosystems: Biodiversity, Stability, Resilience and Future. EnvironmentalConservation, 29, 436-459. https://doi.org/10.1017/s0376892902000322
[48]
Duarte, C.M. (1995) Submerged Aquatic Vegetation in Relation to Different Nutrient Regimes. Ophelia, 41, 87-112. https://doi.org/10.1080/00785236.1995.10422039
[49]
Duarte, C.M., Middelburg, J.J. and Caraco, N. (2005) Major Role of Marine Vegetation on the Oceanic Carbon Cycle. Biogeosciences, 2, 1-8. https://doi.org/10.5194/bg-2-1-2005
[50]
Liao, Y., Chang, C., Nagarajan, D., Chen, C. and Chang, J. (2021) Algae-Derived Hydrocolloids in Foods: Applications and Health-Related Issues. Bioengineered, 12, 3787-3801. https://doi.org/10.1080/21655979.2021.1946359
[51]
El Gamal, A.A. (2010) Biological Importance of Marine Algae. SaudiPharmaceuticalJournal, 18, 1-25. https://doi.org/10.1016/j.jsps.2009.12.001
[52]
Msuya, F.E. (2006) The Impact of Seaweed Farming on the Social and Economic Structure of Seaweed Farming Communities in Zanzibar, Tanzania. In: Critchley, A.T., Ohno, M. and Largo, D.B., Eds., World Seaweed Resources: An Authoritative Reference System, ETI Bioinformatics, 1-26. http://hdl.handle.net/123456789/653