全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exploration of the Seaweed Resources in Nigeria: A Case Study of Lagos Coastal Waters

DOI: 10.4236/ojms.2025.151002, PP. 13-34

Keywords: Seaweed Biodiversity, Lagos Coastal Waters, Marine Ecology, Macroalgae, Blue Economy, Aquaculture

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study provides an in-depth exploration of seaweed biodiversity in Nigeria’s coastal waters, a largely unexplored area for marine resources. There is a dearth of sufficient data on seaweed biodiversity in Nigeria. The research aimed to assess the diversity and distribution of seaweeds in this region. Seaweed samples were collected by hand, using scrapers, at low tide from four stations identified by local fisherfolk and commercial divers. These samples were analyzed in the laboratory for species identification. A total of 39 seaweed taxa were identified, with Rhodophyta (red algae) being the most abundant (74%), followed by Chlorophyta (green algae) (21%) and Heterokontophyta (brown algae) (5%). The highest biomass species included Grateloupia sp., Chaetomorpha antennina, Gracilaria sp., Ceratodictyon variabile, Cladophora sp., Gelidium pusillum, Ulva sp., Blidingia minima, and Caloglossa leprieurii. Species abundance was highest on breakwater rocks and on the bodies of anchored or sunken vessels, while sandy beaches exhibited lower abundance. The findings reveal significant potential for Nigeria’s seaweed in aquaculture, climate change mitigation, and biotechnology. The study recommends further molecular research, expansion of sampling areas, and the development of sustainable seaweed cultivation practices to support Nigeria’s blue economy.

References

[1]  Cooley, S., Schoeman, D., Bopp, L., Boyd, P., Donner, S., Kiessling, W., Martinetto, P., et al. (2022) Oceans and Coastal Ecosystems and Their Services. Cambridge University Press, 379-550.
[2]  Adarshan, S., Sree, V.S.S., Muthuramalingam, P., Nambiar, K.S., Sevanan, M., Satish, L., et al. (2023) Understanding Macroalgae: A Comprehensive Exploration of Nutraceutical, Pharmaceutical, and Omics Dimensions. Plants, 13, Article No. 113.
https://doi.org/10.3390/plants13010113
[3]  Guiry, M.D. (2010) AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway.
http://www.algaebase.org/
[4]  Sode, S., Bruhn, A., Balsby, T.J.S., Larsen, M.M., Gotfredsen, A. and Rasmussen, M.B. (2013) Bioremediation of Reject Water from Anaerobically Digested Waste Water Sludge with Macroalgae (Ulva lactuca, Chlorophyta). Bioresource Technology, 146, 426-435.
https://doi.org/10.1016/j.biortech.2013.06.062
[5]  Wei, Z., You, J., Wu, H., Yang, F., Long, L., Liu, Q., et al. (2017) Bioremediation Using Gracilaria lemaneiformis to Manage the Nitrogen and Phosphorous Balance in an Integrated Multi-Trophic Aquaculture System in Yantian Bay, China. Marine Pollution Bulletin, 121, 313-319.
https://doi.org/10.1016/j.marpolbul.2017.04.034
[6]  Bilanovic, D., Andargatchew, A., Kroeger, T. and Shelef, G. (2009) Freshwater and Marine Microalgae Sequestering of CO2 at Different C and N Concentrations—Response Surface Methodology Analysis. Energy Conversion and Management, 50, 262-267.
https://doi.org/10.1016/j.enconman.2008.09.024
[7]  N’Yeurt, A.D.R., Chynoweth, D.P., Capron, M.E., Stewart, J.R. and Hasan, M.A. (2012) Negative Carbon via Ocean Afforestation. Process Safety and Environmental Protection, 90, 467-474.
https://doi.org/10.1016/j.psep.2012.10.008
[8]  Lian, Y., Wang, R., Zheng, J., Chen, W., Chang, L., Li, C., et al. (2023) Carbon Sequestration Assessment and Analysis in the Whole Life Cycle of Seaweed. Environmental Research Letters, 18, Article ID: 074013.
https://doi.org/10.1088/1748-9326/acdae9
[9]  Yong, W.T.L., Thien, V.Y., Rupert, R. and Rodrigues, K.F. (2022) Seaweed: A Potential Climate Change Solution. Renewable and Sustainable Energy Reviews, 159, Article ID: 112222.
https://doi.org/10.1016/j.rser.2022.112222
[10]  Farghali, M., Mohamed, I.M.A., Osman, A.I. and Rooney, D.W. (2022) Seaweed for Climate Mitigation, Wastewater Treatment, Bioenergy, Bioplastic, Biochar, Food, Pharmaceuticals, and Cosmetics: A Review. Environmental Chemistry Letters, 21, 97-152.
https://doi.org/10.1007/s10311-022-01520-y
[11]  Boubonari, T., Malea, P. and Kevrekidis, T. (2008) The Green Seaweed Ulva rigida as a Bioindicator of Metals (Zn, Cu, Pb and Cd) in a Low-Salinity Coastal Environment. Botanica Marina, 51, 472-484.
https://doi.org/10.1515/bot.2008.059
[12]  McHugh, D.J. (2003) Seaweeds Uses as Human Foods. A Guide to the Seaweed Industry. FAO Fisheries Technical Paper (FAO), 441.
https://openknowledge.fao.org/handle/20.500.14283/Y4765E
[13]  Lomartire, S., Marques, J.C. and Gonçalves, A.M.M. (2021) An Overview to the Health Benefits of Seaweeds Consumption. Marine Drugs, 19, Article No. 341.
https://doi.org/10.3390/md19060341
[14]  Klnc, B., Cirik, S., Turan, G., Tekogul, H. and Koru, E. (2013) Seaweeds for Food and Industrial Applications. In: Muzzalupo, I., Ed., Food Industry, InTech Open, 735-748.
https://doi.org/10.5772/53172
[15]  Jayakody, M.M., Vanniarachchy, M.P.G. and Wijesekara, I. (2022) Seaweed Derived Alginate, Agar, and Carrageenan Based Edible Coatings and Films for the Food Industry: A Review. Journal of Food Measurement and Characterization, 16, 1195-1227.
https://doi.org/10.1007/s11694-021-01277-y
[16]  Orbitshub. Port of Lagos: Economic Impact, Infrastructure, and Future.
https://orbitshub.com/port-of-lagos-economic-impact-infrastructure-and-future/
[17]  Ekpo, E.I. (2012) Impact of Shipping on Nigerian Economy: Implications for Sustainable Development. Journal of Educational and Social Research, 2, 107-117.
[18]  Croitoru, L., Miranda, J.J., Khattabi, A. and Lee, J.J. (2020) The Cost of Coastal Zone Degradation in Nigeria: Cross River, Delta and Lagos States. World Bank Group.
https://hdl.handle.net/10986/34758
[19]  Anderson, R.J., Stegenga, H. and Bolton, J.J. (2016) Seaweeds of the South African South Coast. World Wide Web Electronic Publication.
http://southafrseaweeds.uct.ac.Za
[20]  Fakoya, K.A., Owodeinde, F.G., Akintola, S.L., Adewolu, M.A., Abass, M.A. and Ndimele, P.E. (2010) An Exposition on Potential Seaweed Resources for Exploitation, Culture and Utilization in West Africa: A Case Study of Nigeria. Journal of Fisheries and Aquatic Science, 6, 37-47.
https://doi.org/10.3923/jfas.2011.37.47
[21]  Kalvas, A. and Kautsky, L. (1993) Geographical Variation in Fucus vesiculosus Morphology in the Baltic and North Seas. European Journal of Phycology, 28, 85-91.
https://doi.org/10.1080/09670269300650141
[22]  Miller, S.M., Hurd, C.L. and Wing, S.R. (2011) Variations in Growth, Erosion, Productivity, and Morphology of Ecklonia radiata (Alariaceae; Laminariales) along a Fjord in Southern New Zealand. Journal of Phycology, 47, 505-516.
https://doi.org/10.1111/j.1529-8817.2011.00966.x
[23]  Díaz-Tapia, P., Maggs, C.A., Nelson, W., Macaya, E.C. and Verbruggen, H. (2019) Reassessment of the Genus Lophurella (Rhodomelaceae, Rhodophyta) from Australia and New Zealand Reveals Four Cryptic Species. European Journal of Phycology, 55, 113-128.
https://doi.org/10.1080/09670262.2019.1659419
[24]  Blanchette, C.A. (1997) Size and Survival of Intertidal Plants in Response to Wave Action: A Case Study with Fucus gardneri. Ecology, 78, 1563-1578.
https://doi.org/10.1890/0012-9658(1997)078[1563:sasoip]2.0.co;2
[25]  Blanchette, C., Miner, B. and Gaines, S. (2002) Geographic Variability in Form, Size and Survival of Egregia menziesii around Point Conception, California. Marine Ecology Progress Series, 239, 69-82.
https://doi.org/10.3354/meps239069
[26]  Duggins, D., Eckman, J., Siddon, C. and Klinger, T. (2003) Population, Morphometric and Biomechanical Studies of Three Understory Kelps along a Hydrodynamic Gradient. Marine Ecology Progress Series, 265, 57-76.
https://doi.org/10.3354/meps265057
[27]  Wolcott, B. (2007) Mechanical Size Limitation and Life-History Strategy of an Intertidal Seaweed. Marine Ecology Progress Series, 338, 1-10.
https://doi.org/10.3354/meps338001
[28]  Gouveia, C., Kreusch, M., Schmidt, É.C., Felix, M.R.D.L., Osorio, L.K.P., Pereira, D.T., et al. (2013) The Effects of Lead and Copper on the Cellular Architecture and Metabolism of the Red Alga Gracilaria domingensis. Microscopy and Microanalysis, 19, 513-524.
https://doi.org/10.1017/s1431927613000317
[29]  Sampath-Wiley, P., Neefus, C.D. and Jahnke, L.S. (2008) Seasonal Effects of Sun Exposure and Emersion on Intertidal Seaweed Physiology: Fluctuations in Antioxidant Contents, Photosynthetic Pigments and Photosynthetic Efficiency in the Red Alga Porphyra umbilicalis Kützing (Rhodophyta, Bangiales). Journal of Experimental Marine Biology and Ecology, 361, 83-91.
https://doi.org/10.1016/j.jembe.2008.05.001
[30]  Stegenga, H. (2011) Sri Lankan Seaweeds: Methodologies and Field Guide to the Dominant Species. Botanica Marina, 54, 109.
https://doi.org/10.1515/bot.2011.004
[31]  Ali, A., Malik, S., Zaidi, A.Z., Ahmad, N., Shafique, S., Aftab, M.N., et al. (2019) Standing Stock of Seaweeds in Submerged Habitats along the Karachi Coast, Pakistan: An Alternative Source of Livelihood for Coastal Communities. Pakistan Journal of Botany, 51, 1819-1830.
https://doi.org/10.30848/pjb2019-5(2)
[32]  Abdullah Al, M., Akhtar, A., Rahman, M.F., Kamal, A.H.M., Karim, N.U. and Hassan, M.L. (2020) Habitat Structure and Diversity Patterns of Seaweeds in the Coastal Waters of Saint Martin’s Island, Bay of Bengal, Bangladesh. Regional Studies in Marine Science, 33, Article ID: 100959.
https://doi.org/10.1016/j.rsma.2019.100959
[33]  Li, X., Wang, K., Zhang, S. and Feng, M. (2021) Distribution and Flora of Seaweed Beds in the Coastal Waters of China. Sustainability, 13, Article No. 3009.
https://doi.org/10.3390/su13063009
[34]  Bashir, F., Abbas, A., Shaukat, S.S., Siddiqui, M.F. and Qureshi, I.A. (2022) Distribution and Diversity of Marine Algae of Sindh Coastal Area: α, β and γ Diversity. Pakistan Journal of Botany, 54, 2377-2382.
https://doi.org/10.30848/pjb2022-6(5)
[35]  Zongo, S.B., Ngohang, F.E., Mabert, B.D.C.K., Nzaba, E.N., Djounga, F.A., Ondo, J.P., et al. (2022) The Marine Benthic Algae Diversity of Gabon: Case of the Rocky Foreshore of Cap Estérias. Open Journal of Marine Science, 12, 127-140.
https://doi.org/10.4236/ojms.2022.124008
[36]  Saeedi, H., Warren, D. and Brandt, A. (2022) The Environmental Drivers of Benthic Fauna Diversity and Community Composition. Frontiers in Marine Science, 9, Article 804019.
https://doi.org/10.3389/fmars.2022.804019
[37]  Liu, Y., Zhong, K., Jueterbock, A., Satoshi, S., Choi, H., Weinberger, F., et al. (2022) The Invasive Alga Gracilaria vermiculophylla in the Native Northwest Pacific under Ocean Warming: Southern Genetic Consequence and Northern Range Expansion. Frontiers in Marine Science, 9, Article 983685.
https://doi.org/10.3389/fmars.2022.983685
[38]  Yow, Y., Lim, P. and Phang, S. (2010) Genetic Diversity of Gracilaria changii (Gracilariaceae, Rhodophyta) from West Coast, Peninsular Malaysia Based on Mitochondrial Cox1 Gene Analysis. Journal of Applied Phycology, 23, 219-226.
https://doi.org/10.1007/s10811-010-9535-5
[39]  Mathieson, A.C., Dawes, C.J., Pederson, J., Gladych, R.A. and Carlton, J.T. (2007) The Asian Red Seaweed Grateloupia turuturu (Rhodophyta) Invades the Gulf of Maine. Biological Invasions, 10, 985-988.
https://doi.org/10.1007/s10530-007-9176-z
[40]  Hassaan, M.A. and El Nemr, A. (2021) Ballast Water Definition, Components, Aquatic Invasive Species, Control and Management and Treatment Technologies. In: Inamuddin, Ahamed, M.I., Lichtfouse, E. and Altalhi, T., Eds., Remediation of Heavy Metals, Springer, 289-304.
https://doi.org/10.1007/978-3-030-80334-6_11
[41]  Hewitt, C.L., Campbell, M.L. and Schaffelke, B. (2007) Introductions of Seaweeds: Accidental Transfer Pathways and Mechanisms. Botanica Marina, 50, 326-337.
https://doi.org/10.1515/bot.2007.038
[42]  Carlton, J.T., Geller, J.B., Reaka-Kudla, M.L. and Norse, E.A. (1999) Historical Extinctions in the Sea. Annual Review of Ecology and Systematics, 30, 515-538.
https://doi.org/10.1146/annurev.ecolsys.30.1.515
[43]  Minchin, D. and Gollasch, S. (2003) Fouling and Ships’ Hulls: How Changing Circumstances and Spawning Events May Result in the Spread of Exotic Species. Biofouling, 19, 111-122.
https://doi.org/10.1080/0892701021000057891
[44]  Williams, S.L. and Smith, J.E. (2007) A Global Review of the Distribution, Taxonomy, and Impacts of Introduced Seaweeds. Annual Review of Ecology, Evolution, and Systematics, 38, 327-359.
https://doi.org/10.1146/annurev.ecolsys.38.091206.095543
[45]  Schaffelke, B. and Hewitt, C.L. (2007) Impacts of Introduced Seaweeds. Botanica Marina, 50, 397-417.
https://doi.org/10.1515/bot.2007.044
[46]  Sylvester, F., Kalaci, O., Leung, B., Lacoursière‐Roussel, A., Murray, C.C., Choi, F.M., et al. (2011) Hull Fouling as an Invasion Vector: Can Simple Models Explain a Complex Problem? Journal of Applied Ecology, 48, 415-423.
https://doi.org/10.1111/j.1365-2664.2011.01957.x
[47]  Steneck, R.S., Graham, M.H., Bourque, B.J., Corbett, D., Erlandson, J.M., Estes, J.A., et al. (2002) Kelp Forest Ecosystems: Biodiversity, Stability, Resilience and Future. Environmental Conservation, 29, 436-459.
https://doi.org/10.1017/s0376892902000322
[48]  Duarte, C.M. (1995) Submerged Aquatic Vegetation in Relation to Different Nutrient Regimes. Ophelia, 41, 87-112.
https://doi.org/10.1080/00785236.1995.10422039
[49]  Duarte, C.M., Middelburg, J.J. and Caraco, N. (2005) Major Role of Marine Vegetation on the Oceanic Carbon Cycle. Biogeosciences, 2, 1-8.
https://doi.org/10.5194/bg-2-1-2005
[50]  Liao, Y., Chang, C., Nagarajan, D., Chen, C. and Chang, J. (2021) Algae-Derived Hydrocolloids in Foods: Applications and Health-Related Issues. Bioengineered, 12, 3787-3801.
https://doi.org/10.1080/21655979.2021.1946359
[51]  El Gamal, A.A. (2010) Biological Importance of Marine Algae. Saudi Pharmaceutical Journal, 18, 1-25.
https://doi.org/10.1016/j.jsps.2009.12.001
[52]  Msuya, F.E. (2006) The Impact of Seaweed Farming on the Social and Economic Structure of Seaweed Farming Communities in Zanzibar, Tanzania. In: Critchley, A.T., Ohno, M. and Largo, D.B., Eds., World Seaweed Resources: An Authoritative Reference System, ETI Bioinformatics, 1-26.
http://hdl.handle.net/123456789/653

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133