This study evaluates the effects of the initial situation of the site (slope and quality of the soil with its resistance characteristics), building loads, support and drainage/non-drainage on the safety and stability of sloping sites. The objective is to contribute to the stabilization of sloping sites under building loads. Considering a sloping site under building loads in the city of Bujumbura in Burundi facing the problem of instability, an experimental study of the site’s soils is first carried out in the laboratory. Secondly, an analysis by numerical simulation of stability is carried out based on 3 main simulation cases: By first considering an initial situation (unloaded), then a loaded situation without support and a loaded situation with support. The calculation is carried out in a drained state and in an undrained state, with a water table blocked at depth to simulate the reality on the ground. Three buildings of different levels are designed according to the existing buildings and their loads are determined for the loaded case simulations. The results of the analysis thus make it possible to assess the effect on safety and stability of: 1) the slope of the unloaded site and the quality of the soil with its resistance characteristics, 2) the loads of the buildings or their intensive increase, 3) the drained or undrained state of the soil on the site, 4) the support or non-support of the unloaded or loaded, drained or undrained sloping site.
References
[1]
Cuervo, Y. (2015) Modélisation des éboulements rocheux par la méthode des élé-ments discrets: Application aux évènements réels. Ph.D. Thesis, Université Grenoble Alpes.
[2]
Antoine, P., Biarez, J., Desvarreux, P. and Mougin, J.P. (1971) Les problèmes posés par la stabilité des pentes dans les régions montagneuses. Géologie Alpine, 47, 5-24.
Yong, X., Zhang, Y., Hou, Y., Han, B., An, N., Zhang, H., et al. (2023) Stability of Loess High-Fill Slope Based on Monitored Soil Moisture Changes. ResearchinColdandAridRegions, 15, 191-201. https://doi.org/10.1016/j.rcar.2023.10.001
[5]
Khemissa, M. (2005) Méthodes d’analyse de la stabilité et techniques de stabilisation des pentes. Comité français de Mécanique des Roches.
[6]
Masekanya, J.P. (2008) Stabilité des pentes et saturation partielle Etude expérimentale et modélisation numérique. Ph.D. Thesis, Université de Liège.
[7]
Agbelele, K.J., Adeoti, G.O., Agossou, D.Y. and Aïsse, G.G. (2023) Study of Slope Stability Using the Bishop Slice Method: An Approach Combining Analytical and Numerical Analyses. OpenJournalofAppliedSciences, 13, 1446-1456. https://doi.org/10.4236/ojapps.2023.138115
[8]
Liu, C. and Hounsa, U.S.F. (2018) Analysis of Road Embankment Slope Stability. OpenJournalofCivilEngineering, 8, 121-128. https://doi.org/10.4236/ojce.2018.82010
[9]
Didit, M., Zhang, X. and Zhu, W. (2022) Slope Stability Considering the Top Building Load. OpenJournalofCivilEngineering, 12, 292-300. https://doi.org/10.4236/ojce.2022.123017
[10]
Coquillay, S. (2005) Prise en compte de la non linéarité du comportement des sols soumis à de petites déformations pour le calcul des ouvrages géotechniques. Ecole nationale des ponts et chaussées.
[11]
Pierre, G., et al. (2018) Impact de l’infiltration et de l’évaporation sur la stabilité des pentes. Université Libre de Bruxelles. Ecole Polytechnique de Bruxelles—Constructions. https://worldcat.org/fr/title/1029465108
[12]
Tisot, J.P. (2000) Propriétés Mécaniques et Physiques des sols. Ecole nationale supérieure de géologie de Nancy. https://rpn.univ-lorraine.fr/UL/Proprietes-Meca-Sols/general/index.html
[13]
Berthaud, Y., et al. (2008) Aide-mémoire Mécanique des sols: Concepts-Applications. Dunod.
[14]
Nova, R. (2005) Fondements de la mécanique des sols. Lavoisier.
[15]
Lowe, J. (1967) Stability Analysis of Embankments. JournaloftheSoilMechanicsandFoundationsDivision, 93, 1-33. https://doi.org/10.1061/jsfeaq.0000984
Verbrugge, J.C. (2010) Fondations et ouvrages en terre: Deuxième partie-Volume 1. Presses universitaires de Bruxelles.
[18]
Shirambere, G., Nyadawa, M., Masekanya, J.P., Nyomboi, T. (2018) Comparative Assessment of Landslide Susceptibility by Logistic Regression and First Order Second Moment Method: Case of Bujumbura-Urban Area, Burundi. Journal of Engineering Research and Application, 8, 28-37.
[19]
Xu, B. and Low, B.K. (2006) Probabilistic Stability Analyses of Embankments Based on Finite-Element Method. JournalofGeotechnicalandGeoenvironmentalEngineering, 132, 1444-1454. https://doi.org/10.1061/(asce)1090-0241(2006)132:11(1444)
[20]
Wang, L. and Lei, Q. (2023) Modelling the Pre-and Post-Failure Behaviour of Faulted Rock Slopes Based on the Particle Finite Element Method with a Damage Mechanics Model. ComputersandGeotechnics, 153, Article ID: 105057. https://doi.org/10.1016/j.compgeo.2022.105057
[21]
Li, J., Gao, Y., Yang, T., Zhang, P., Zhao, Y., Deng, W., et al. (2023) Integrated Simulation and Monitoring to Analyze Failure Mechanism of the Anti-Dip Layered Slope with Soft and Hard Rock Interbedding. InternationalJournalofMiningScienceandTechnology, 33, 1147-1164. https://doi.org/10.1016/j.ijmst.2023.06.006
[22]
Kahlström, M. (2013) Plaxis 2D Comparison of Mohr-Coulomb and Soft Soil Mate-rial Models. Master’s Thesis, Lulea University of Technology.
[23]
Sellami, S. and Belamri, S. (2014) Etude de stabilité et de confortement du glissement de terrain CW 16 Ait Idriss Bejaia. Master’s Thesis, Université Abderrahmane MI-RA-Bejaie.
[24]
Adel, L. (2015) Utilisation des méthodes numériques dans les calculs de la stabilité des barrages en terre. Master’s Thesis, Ecole nationale superieure d’hydraulique-Arbaoui Abdellah.
[25]
TerraSol (2021) Logiciel éléments finis 2D dédié à la géotechnique.
[26]
Plaxis B. V. (2006) Plaxis 2D-Version 8: Material Models Manual.
[27]
Plan Maison Architecte (2019) Construire sur un terrain en pente. https://plan-maison-architecte.com