全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oscillation Analysis of a Bifilar Pendulum with Mathematica

DOI: 10.4236/wjm.2024.1410010, PP. 199-204

Keywords: Bifilar Pendulum, Oscillation Period, ODE, Mathematica

Full-Text   Cite this paper   Add to My Lib

Abstract:

Utilizing a Computer Algebra System (CAS), namely MathematicaR, the characteristics of a bifilar disk-shaped pendulum have been studied. By applying the Lagrangian methodology, the disk’s motion equation is formulated. This is conducive to an ODE, and its numeric solution co-insides with intuitive expectation. The period of the oscillations and tension in the strings are calculated and graphed.

References

[1]  Lennon, J. (1980) Torsional Pendulum.
https://www.physics.louisville.edu/cldavis/phys298/notes/torpend.html
[2]  Bauer, W. and Westfall, G. (2011) University Physics with Modern Physics. McGraw Hill.
[3]  Haillday, D., Resnick, R. and Walker, J. (2013) Fundamental of Physics Extended. 12th Edition, Wiley.
[4]  WOLFRAM (2024) Mathematica V14.1.
http://wolfram.com
[5]  Gantmacher, F. (1970) Lectures in Analytic Mechanics. MIR Publishers Moscow.
[6]  Sokolnikoff, R. (1966) Mathematics of Physics and Modern Engineering. 2nd Edition, McGraw-Hill Books Company.
[7]  Si, Y.-Z., Gao, Y.-D. and Wang, H.-M. (2013) Analysis of Dynamic Characteristics of Asymmetric Bifilar Pendulum Absorber. Nanjing University of Aeronautics & Astronautics.
[8]  https://physlab.org/wp-content/uploads/2017/05/Bifilar-Pendulum-1.compressed.pdf
[9]  https://physics.stackexchange.com/questions/759044/period-formula-for-bifilar-pendulum
[10]  Wolfram, S. (2003) Mathematica Book. 5th Edition, Cambridge University Press.
[11]  Sarafian, H. (2019) Mathematica Graphics Examples. 2nd Edition, Scientific Research Publishing.
[12]  Sarafian, H. (2015) Mathematica Graphics Example Book for Beginners. Scientific Research Publishing.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133