|
芳烃的氰甲基化反应
|
Abstract:
腈类基团是一类广泛存在于一些具有药理学作用的化合物和一些天然产物中的重要官能团。芳基乙腈更是可以作为一些具有生物活性分子的起始原料,而且氰基可以很容易地转化为各种其他官能团,比如胺、酸、酰胺等。芳基乙腈本身也可以作为某些杂环结构的构建单元。本文将对这类官能团的合成,即芳烃的氰甲基化进行总结和分析。通过文献调研发现,目前这类反应主要通过金属催化实现。
Nitrile groups are a kind of important functional groups widely existing in some compounds with pharmacological effects and some natural products. Aryl acetonitrile can be used as a starting material for some biologically active molecules, and the cyanide group can be easily converted into various other functional groups, such as amines, acids, amides, etc. Aryl acetonitrile itself can also be used as a building block for some heterocyclic structures. In this paper, the synthesis of these functional groups, that is, the cyanomethylation of aromatics, will be summarized and analyzed. Through the literature research, at present, this kind of reaction is mainly achieved by metal catalysis.
[1] | Wang, X., Wang, Y., Li, X., Yu, Z., Song, C. and Du, Y. (2021) Nitrile-Containing Pharmaceuticals: Target, Mechanism of Action, and Their SAR Studies. RSC Medicinal Chemistry, 12, 1650-1671. https://doi.org/10.1039/d1md00131k |
[2] | Wang, Y., Du, Y. and Huang, N. (2018) A Survey of the Role of Nitrile Groups in Protein-Ligand Interactions. Future Medicinal Chemistry, 10, 2713-2728. https://doi.org/10.4155/fmc-2018-0252 |
[3] | Norsworthy, J.K., Talbert, R.E. and Hoagland, R.E. (1999) Chlorophyll Fluorescence Evaluation of Agrochemical Interactions with Propanil on Propanil-Resistant Barnyardgrass (Echinochloa crus-galli). Weed Science, 47, 13-19. https://doi.org/10.1017/s0043174500090597 |
[4] | Smith, R.J. and Tugwell, N.P. (1975) Propanil-Carbofuran Interactions in Rice. Weed Science, 23, 176-178. https://doi.org/10.1017/s0043174500052784 |
[5] | Liu, T., Xu, M., Bai, Z., Xu, X., Ren, D., Chen, W., et al. (2022) Toughening Effect of Poly (Arylene Ether Nitrile) on Phthalonitrile Resin and Fiber Reinforced Composites. Journal of Materials Science, 57, 18343-18355. https://doi.org/10.1007/s10853-022-07780-x |
[6] | Leader, H., Smejkal, R.M., Payne, C.S., Padilla, F.N., Doctor, B.P., Gordon, R.K., et al. (1989) Binary Antidotes for Organophosphate Poisoning: Aprophen Analogs That Are Both Antimuscarinics and Carbamates. Journal of Medicinal Chemistry, 32, 1522-1528. https://doi.org/10.1021/jm00127a020 |
[7] | Trivedi, B.K., Holmes, A., Stoeber, T.L., Blankley, C.J., Roark, W.H., Picard, J.A., et al. (1993) Inhibitors of Acyl-CoA: Cholesterol Acyltransferase. 4. A Novel Series of Urea ACAT Inhibitors as Potential Hypocholesterolemic Agents. Journal of Medicinal Chemistry, 36, 3300-3307. https://doi.org/10.1021/jm00074a011 |
[8] | Tiecco, M., Testaferri, L., Tingoli, M. and Bartoli, D. (1990) Iodine (III) Mediated Acetoxy-Lactonization of Unsaturated Nitriles. Tetrahedron, 46, 7139-7150. https://doi.org/10.1016/s0040-4020(01)87896-0 |
[9] | Bush, E.J. and Jones, D.W. (1997) Control of Stereochemistry in an Intramolecular Diels-Alder Reaction by the Phenylsulfonyl Group; an Improved Synthesis of Pisiferol. Journal of the Chemical Society, Perkin Transactions 1, No. 23, 3531-3536. https://doi.org/10.1039/a702761c |
[10] | Bromidge, S.M., Brown, F., Cassidy, F., Clark, M.S.G., Dabbs, S., Hawkins, J., et al. (1992) A Novel and Selective Class of Azabicyclic Muscarinic Agonists Incorporating an N-Methoxy Imidoyl Halide or Nitrile Functionality. Bioorganic & Medicinal Chemistry Letters, 2, 791-796. https://doi.org/10.1016/s0960-894x(00)80533-8 |
[11] | Dei, S., Romanelli, M.N., Scapecchi, S., Teodori, E., Chiarini, A. and Gualtieri, F. (1991) Verapamil Analog with Restricted Molecular Flexibility. Journal of Medicinal Chemistry, 34, 2219-2225. https://doi.org/10.1021/jm00111a043 |
[12] | Mitani, K., Sakurai, S., Suzuki, T., Morikawa, K., Koshinaka, E., Kato, H., et al. (1988) Novel Phenoxyalkylamine Derivatives. V. Synthesis, α-Blocking Activity and Quantitative Structure-Activity Analysis of α-[(Phenoxyethyl-amino)propyy]-α-phenyyacetonitrile Derivatives. Chemical and Pharmaceutical Bulletin, 36, 4121-4135. https://doi.org/10.1248/cpb.36.4121 |
[13] | Theodore, L.J. and Nelson, W.L. (1987) Stereospecific Synthesis of the Enantiomers of Verapamil and Gallopamil. The Journal of Organic Chemistry, 52, 1309-1315. https://doi.org/10.1021/jo00383a026 |
[14] | Loupy, A., Philippon, N., Pigeon, P., Sansoulet, J. and Galons, H. (1990) Solid-Liquid Phase Transfer Catalysis without Solvent: Further Improvement in SNAr Reactions. Synthetic Communications, 20, 2855-2864. https://doi.org/10.1080/00397919008051499 |
[15] | Sommer, M.B., Begtrup, M. and Boegesoe, K.P. (1990) Displacement of Halogen of 2-Halo-Substituted Benzonitriles with Carbanions. Preparation of (2-Cyanoaryl)arylacetonitriles. The Journal of Organic Chemistry, 55, 4817-4821. https://doi.org/10.1021/jo00303a011 |
[16] | Zhang, X., Yang, D. and Liu, Y. (1993) Effects of Electron Acceptors and Radical Scavengers on Nonchain Radical Nucleophilic Substitution Reactions. The Journal of Organic Chemistry, 58, 224-227. https://doi.org/10.1021/jo00053a040 |
[17] | Makosza, M., Podraza, R. and Kwast, A. (1994) Does the Nucleophilic Substitution of Halogen in O-and P-Halonitrobenzenes with Cyanoacetate Carbanions Proceed via Single Electron Transfer and a Nonchain Radical Process? The Journal of Organic Chemistry, 59, 6796-6799. https://doi.org/10.1021/jo00101a046 |
[18] | Plevey, R.G. and Sampson, P. (1987) The Synthesis of 3-(4-Aminotetrafluorophenyl)-3-Ethylpiperidine-2,6-Dione; a Fluorinated Derivative of Aminoglutethimide. Journal of the Chemical Society, Perkin Transactions 1, 2129-2136. https://doi.org/10.1039/p19870002129 |
[19] | Caron, S., Vazquez, E. and Wojcik, J.M. (2000) Preparation of Tertiary Benzylic Nitriles from Aryl Fluorides. Journal of the American Chemical Society, 122, 712-713. https://doi.org/10.1021/ja9933846 |
[20] | Okuro, K., Furuune, M., Miura, M. and Nomura, M. (1993) Copper-Catalyzed Reaction of Aryl Iodides with Active Methylene Compounds. The Journal of Organic Chemistry, 58, 7606-7607. https://doi.org/10.1021/jo00078a053 |
[21] | Stauffer, S.R., Beare, N.A., Stambuli, J.P. and Hartwig, J.F. (2001) Palladium-Catalyzed Arylation of Ethyl Cyanoacetate. Fluorescence Resonance Energy Transfer as a Tool for Reaction Discovery. Journal of the American Chemical Society, 123, 4641-4642. https://doi.org/10.1021/ja0157402 |
[22] | Beare, N.A. and Hartwig, J.F. (2001) Palladium-Catalyzed Arylation of Malonates and Cyanoesters Using Sterically Hindered Trialkyl-and Ferrocenyldialkylphosphine Ligands. The Journal of Organic Chemistry, 67, 541-555. https://doi.org/10.1021/jo016226h |
[23] | Culkin, D.A. and Hartwig, J.F. (2003) Palladium-Catalyzed Α-Arylation of Carbonyl Compounds and Nitriles. Accounts of Chemical Research, 36, 234-245. https://doi.org/10.1021/ar0201106 |
[24] | Wu, L. and Hartwig, J.F. (2005) Mild Palladium-Catalyzed Selective Monoarylation of Nitriles. Journal of the American Chemical Society, 127, 15824-15832. https://doi.org/10.1021/ja053027x |
[25] | Velcicky, J., Soicke, A., Steiner, R. and Schmalz, H. (2011) Palladium-Catalyzed Cyanomethylation of Aryl Halides through Domino Suzuki Coupling-isoxazole Fragmentation. Journal of the American Chemical Society, 133, 6948-6951. https://doi.org/10.1021/ja201743j |
[26] | Shang, R., Ji, D., Chu, L., Fu, Y. and Liu, L. (2011) Synthesis of Α‐Aryl Nitriles through Palladium‐Catalyzed Decarboxylative Coupling of Cyanoacetate Salts with Aryl Halides and Triflates. Angewandte Chemie International Edition, 50, 4470-4474. https://doi.org/10.1002/anie.201006763 |
[27] | Chen, Y., Xu, L., Jiang, Y. and Ma, D. (2021) Assembly of Α‐(hetero)aryl Nitriles via Copper‐Catalyzed Coupling Reactions with (Hetero)aryl Chlorides and Bromides. Angewandte Chemie, 133, 7158-7162. https://doi.org/10.1002/ange.202014638 |
[28] | Wu, G., Deng, Y., Wu, C., Zhang, Y. and Wang, J. (2014) Synthesis of Α‐Aryl Esters and Nitriles: Deaminative Coupling of Α‐Aminoesters and Α‐Aminoacetonitriles with Arylboronic Acids. Angewandte Chemie International Edition, 53, 10510-10514. https://doi.org/10.1002/anie.201406765 |
[29] | Ye, S., Wang, H., Liang, G., Hu, Z., Wan, K., Zhang, L., et al. (2024) Ortho-Cyanomethylation of Aryl Fluoroalkyl Sulfoxides via a Sulfonium-Claisen Rearrangement. Organic & Biomolecular Chemistry, 22, 1495-1499. https://doi.org/10.1039/d3ob02102e |
[30] | Culkin, D.A. and Hartwig, J.F. (2002) Synthesis, Characterization, and Reactivity of Arylpalladium Cyanoalkyl Complexes: Selection of Catalysts for the Α-Arylation of Nitriles. Journal of the American Chemical Society, 124, 9330-9331. https://doi.org/10.1021/ja026584h |
[31] | You, J. and Verkade, J.G. (2003) A General Method for the Direct Α‐Arylation of Nitriles with Aryl Chlorides. Angewandte Chemie International Edition, 42, 5051-5053. https://doi.org/10.1002/anie.200351954 |
[32] | Tian, J., Luo, F., Zhang, C., Huang, X., Zhang, Y., Zhang, L., et al. (2018) Selective ortho C-H Cyanoalkylation of (Diacetoxyiodo)arenes through [3,3]‐Sigmatropic Rearrangement. Angewandte Chemie International Edition, 57, 9078-9082. https://doi.org/10.1002/anie.201803455 |
[33] | Wang, J., Li, H. and Zhang, Y. (2013) Reaction of Diazo Compounds with Organoboron Compounds. Synthesis, 45, 3090-3098. https://doi.org/10.1055/s-0033-1340041 |
[34] | Lee, S., Zhu, C., Huang, K., Bau, J.A., Jia, J., Yue, H., et al. (2023) Photoinduced Nickel-Catalyzed Demethylative Cyanation and Decarboxylative Cyanomethylation of Aryl Halides. ACS Catalysis, 13, 16279-16285. https://doi.org/10.1021/acscatal.3c04745 |
[35] | Lindsay-Scott, P.J., Clarke, A. and Richardson, J. (2015) Two-Step Cyanomethylation Protocol: Convenient Access to Functionalized Aryl-and Heteroarylacetonitriles. Organic Letters, 17, 476-479. https://doi.org/10.1021/ol503479g |
[36] | Su, W., Raders, S., Verkade, J.G., Liao, X. and Hartwig, J.F. (2006) Pd‐Catalyzed Α‐Arylation of Trimethylsilyl Enol Ethers with Aryl Bromides and Chlorides: A Synergistic Effect of Two Metal Fluorides as Additives. Angewandte Chemie International Edition, 45, 5852-5855. https://doi.org/10.1002/anie.200601887 |
[37] | Pasto, D.J. and Wojtkowski, P.W. (1970) Transfer Reactions Involving Boron. XXI Intermediates Formed in the Alkylation of Diazocompounds and Dimethylsulfonium Phenacylide via Organoboranes. Tetrahedron Letters, 11, 215-218. https://doi.org/10.1016/0040-4039(70)80029-6 |
[38] | Tanaka, D. and Myers, A.G. (2004) Heck-Type Arylation of 2-Cycloalken-1-Ones with Arylpalladium Intermediates Formed by Decarboxylative Palladation and by Aryl Iodide Insertion. Organic Letters, 6, 433-436. https://doi.org/10.1021/ol0363467 |
[39] | Gooßen, L.J., Rodríguez, N., Lange, P.P. and Linder, C. (2010) Decarboxylative Cross‐Coupling of Aryl Tosylates with Aromatic Carboxylate Salts. Angewandte Chemie International Edition, 49, 1111-1114. https://doi.org/10.1002/anie.200905953 |