全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Variations in the Size of the African Grasscutter (Thryonomys swinderianus, Temminck, 1827) Brain during Normal Aging

DOI: 10.4236/jbm.2024.1212025, PP. 315-334

Keywords: African Grasscutter, Aging, Brain, Size

Full-Text   Cite this paper   Add to My Lib

Abstract:

Research Background: Aging in mammals is characterized by a gradual decline in the physiological functions and responses of organs and tissues. The African grasscutter (Thryonomys swinderianus) is the second largest rodent in sub-Saharan Africa. Objectives: The aim of this research was to record the brain sizes of African grasscutter across all age groups. Methods: Brain samples were collected from forty-two (42) male African grasscutter (AGC) using basic neuroanatomical techniques. Animals were divided into neonates (PND 6), peripubertal (PND 30), juveniles (PND 90), subadults (PND 240), young adults (PND 720), mid-adults (PND 1400), and older animals (PND 1800). The dimensions (length, width and height) of the brain, the cerebellum and olfactory bulb of each sample were examined with a one-way ANOVA (P < 0.05). Results: From neonates to the old adults, the length, width and height of the whole AGC brain increased respectively from 53.27 ± 0.04 mm to 64.28 ± 0.04 mm; 22.19 ± 0.03 mm to 31.11 ± 0.04 mm; and 1.28 ± 0.08 mm to 2.19 ± 0.03 mm. The dimensions of the olfactory bulb undergo a phase of growth and decline. The length, width and height of the olfactory bulb increased respectively from 7.23 ± 0.02 mm to 11.47 ± 0.02 mm; 0.23 ± 0.01 mm to 0.29 ± 0.02 mm and 0.16 ± 0.02 mm to 0.39 ± 0.03 mm. For the cerebellum, the dimensions increased from 16.56 ± 0.03 mm to 21.93 ± 0.05 mm for the length between 6 days of birth and 5 years, from 16.26 ± 0.03 mm to 25.22 ± 0.06 mm for the width between 6 days of birth and 4 years and 0.57 ± 0.03 mm to 1.04 ± 0.02 mm for the height between 6 days of birth and 2 years. Decreases were slight in older subjects. Conclusions: The current study concludes that the size of the whole brain, cerebellum and olfactory bulb varies with age and that brain maturation occurs between young and middle adults.

References

[1]  Taridi, N.M., Abd Rani, N., Abd Latiff, A., Wan Ngah, W.Z. and Mazlan, M. (2014) Tocotrienol Rich Fraction Reverses Age-Related Deficits in Spatial Learning and Memory in Aged Rats. Lipids, 49, 855-869.
https://doi.org/10.1007/s11745-014-3919-2
[2]  Picq, J. (2007) Aging Affects Executive Functions and Memory in Mouse Lemur Primates. Experimental Gerontology, 42, 223-232.
https://doi.org/10.1016/j.exger.2006.09.013
[3]  Cabeza, R., Albert, M., Belleville, S., Craik, F.I.M., Duarte, A., Grady, C.L., et al. (2018) Maintenance, Reserve and Compensation: The Cognitive Neuroscience of Healthy Ageing. Nature Reviews Neuroscience, 19, 701-710.
https://doi.org/10.1038/s41583-018-0068-2
[4]  Potvin, O., Mouiha, A., Dieumegarde, L. and Duchesne, S. (2016) Normative Data for Subcortical Regional Volumes over the Lifetime of the Adult Human Brain. NeuroImage, 137, 9-20.
https://doi.org/10.1016/j.neuroimage.2016.05.016
[5]  Bethlehem, R.A.I., Seidlitz, J., White, S.R., Vogel, J.W., Anderson, K.M., Adamson, C., et al. (2022) Brain Charts for the Human Lifespan. Nature, 604, 525-533.
https://doi.org/10.1038/s41586-022-04554-y
[6]  Ingram, D.K. (1985) Analysis of Age-Related Impairments in Learning and Memory in Rodent Models. Annals of the New York Academy of Sciences, 444, 312-331.
https://doi.org/10.1111/j.1749-6632.1985.tb37599.x
[7]  Aydin, A., Yilmaz, S., ÖZkan, Z.E. and Ilgün, R. (2008) Morphological Investigations on the Circulus Arteriosus Cerebri in Mole-Rats (Spalax leucodon). Anatomia, Histologia, Embryologia, 37, 219-222.
https://doi.org/10.1111/j.1439-0264.2007.00834.x
[8]  Taylor, K., Gordon, N., Langley, G. and Higgins, W. (2008) Estimates for Worldwide Laboratory Animal Use in 2005. Alternatives to Laboratory Animals, 36, 327-342.
https://doi.org/10.1177/026119290803600310
[9]  Hudson-Shore, M. (2016) Statistics of Scientific Procedures on Living Animals Great Britain 2015—Highlighting an Ongoing Upward Trend in Animal Use and Missed Opportunities for Reduction. Alternatives to Laboratory Animals, 44, 569-580.
https://doi.org/10.1177/026119291604400606
[10]  Mensah, G.A., Koudande, O.D. and Mensah, E.R.C.K.D. (2007) Captive Breeding and Improvement Program of the Larger Grasscutter (Thryonomys swinderianus). Bulletin de la Recherche Agronomique du Bénin, 56, 18-23.
[11]  Addo, P.G. (1997) Domesticating the Wild Grasscutter (Thryonomys swinderianus Temminck, 1827) under Laboratory Conditions. Ph.D. Thesis, University of Ghana Legon.
[12]  Broalet, E., Tako, A., Soro, D., Zunon-Kipré, Y., Kakou, M. and Fantodji, A. (2014) L’encéphale de l’aulacode (Thryonomys swinderianus, Temminck): Aspects morphologiques et microstructure. Morphologie, 98, 129-130.
https://doi.org/10.1016/j.morpho.2014.04.073
[13]  Fantodji, A. and Soro, D. (2004) L’élevage d’aulacodes. Expérience en Côte d’Ivoire. Edition Gret, Ministère des Affaires étrangères, programme Agridoc.
[14]  Parasido, J.L. (1968) Walker Mammals of the World. 2nd Edition, John Hopkins Press.
[15]  Opara, M.N. (2010) Department of Animal Science and Technology, Fedral University of Technology, PMB 1526, Owerri, Imo State, Nigeria. Research Journal of Forestry, 4, 119-135.
[16]  Ibe, C.S., Ojo, S.A., Salami, S.O., Ayo, J.O. and Ikpegbu, E. (2019) Cerebellar Gross Anatomy of the African Grasscutter (Thryonomys swinderianus—Temminck, 1827) during Foetal and Postnatal Development. Veterinarski arhiv, 89, 559-577.
https://doi.org/10.24099/vet.arhiv.0269
[17]  Byanet, O., Nzalak, J.O., Salami, S.O., Umosen, A.D., Ojo, S.A., Obadiah, H.I., Bosha, B.A. and Onoja, B.O. (2008) Morphometric Observations of the Brain of the African Grasscutter (Thryonomys swinderianus) in Nigeria.
https://www.cabidigitallibrary.org/doi/full/10.5555/20093207261
[18]  Schoenemann, P.T. (2003) Brain Size Scaling and Body Composition in Mammals. Brain, Behavior and Evolution, 63, 47-60.
https://doi.org/10.1159/000073759
[19]  van Praag, H., Kempermann, G. and Gage, F.H. (2000) Neural Consequences of Enviromental Enrichment. Nature Reviews Neuroscience, 1, 191-198.
https://doi.org/10.1038/35044558
[20]  Mohammed, A.H., Zhu, S.W., Darmopil, S., Hjerling-Leffler, J., Ernfors, P., Winblad, B., et al. (2002) Environmental Enrichment and the Brain. Progress in Brain Research, 138, 109-133.
https://doi.org/10.1016/s0079-6123(02)38074-9
[21]  Rosenzweig, M.R. and Bennett, E.L. (1969) Effects of Differential Environments on Brain Weights and Enzyme Activities in Gerbils, Rats, and Mice. Developmental Psychobiology, 2, 87-95.
https://doi.org/10.1002/dev.420020208
[22]  Burns, J.G., Saravanan, A. and Helen Rodd, F. (2009) Rearing Environment Affects the Brain Size of Guppies: Lab-Reared Guppies Have Smaller Brains than Wild-Caught Guppies. Ethology, 115, 122-133.
https://doi.org/10.1111/j.1439-0310.2008.01585.x
[23]  Kihslinger, R.L., Lema, S.C. and Nevitt, G.A. (2006) Environmental Rearing Conditions Produce Forebrain Differences in Wild Chinook Salmon Oncorhynchus Tshawytscha. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 145, 145-151.
https://doi.org/10.1016/j.cbpa.2006.06.041
[24]  Burns, J.G. and Rodd, F.H. (2008) Hastiness, Brain Size and Predation Regime Affect the Performance of Wild Guppies in a Spatial Memory Task. Animal Behaviour, 76, 911-922.
https://doi.org/10.1016/j.anbehav.2008.02.017
[25]  Gonda, A., Välimäki, K., Herczeg, G. and Merilä, J. (2011) Brain Development and Predation: Plastic Responses Depend on Evolutionary History. Biology Letters, 8, 249-252.
https://doi.org/10.1098/rsbl.2011.0837
[26]  McNab, B.K. and Eisenberg, J.F. (1989) Brain Size and Its Relation to the Rate of Metabolism in Mammals. The American Naturalist, 133, 157-167.
https://doi.org/10.1086/284907
[27]  Mace, G.M., Harvey, P.H. and Clutton-Brock, T.H. (1981) Brain Size and Ecology in Small Mammals. Journal of Zoology, 193, 333-354.
https://doi.org/10.1111/j.1469-7998.1981.tb03449.x
[28]  Ibe, C., Ikpegbu, E. and Nlebedum, U. (2018) Structure of the Main Olfactory Bulb and Immunolocalisation of Brain-Derived Neurotrophic Factor in the Olfactory Layers of the African Grasscutter (Thryonomys swinderianus—Temminck, 1827). Alexandria Journal of Veterinary Sciences, 56, 1-10.
https://doi.org/10.5455/ajvs.278580
[29]  Olude, M.A., Mustapha, O.A. and Olopade, J.O. (2016) Morphological Characterization of the African Giant Rat (Cricetomys Gambianus, Waterhouse) Brain across Age Groups: Gross Features of Cortices. Nigerian Journal of Physiological Sciences, 31, 133-138.
[30]  George, I.O., Fawehinmi, H.B., Oyakhire, M.O., Musa, S.A. and Akintola, O.M. (2020) Comparative Studies on the Brains of Local Breeds of Pig (Landrace Breed) and Dog (Mongrel Breed). European Journal of Biomedical, 7, 324-330.
[31]  Kavoi, B.M. and Jameela, H. (2011) Comparative Morphometry of the Olfactory Bulb, Tract and Stria in the Human, Dog and Goat. International Journal of Morphology, 29, 939-946.
https://doi.org/10.4067/s0717-95022011000300047
[32]  Lee, Y.H., Bak, Y., Park, C., Chung, S.J., Yoo, H.S., Baik, K., et al. (2020) Patterns of Olfactory Functional Networks in Parkinson’s Disease Dementia and Alzheimer’s Dementia. Neurobiology of Aging, 89, 63-70.
https://doi.org/10.1016/j.neurobiolaging.2019.12.021
[33]  Ship, J.A., Pearson, J.D., Cruise, L.J., Brant, L.J. and Metter, E.J. (1996) Longitudinal Changes in Smell Identification. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 51, M86-M91.
https://doi.org/10.1093/gerona/51a.2.m86
[34]  Murphy, C. (2002) Prevalence of Olfactory Impairment in Older Adults. JAMA, 288, 2307-2312.
https://doi.org/10.1001/jama.288.18.2307
[35]  Turetsky, B.I., Moberg, P.J., Yousem, D.M., Doty, R.L., Arnold, S.E. and Gur, R.E. (2000) Reduced Olfactory Bulb Volume in Patients with Schizophrenia. American Journal of Psychiatry, 157, 828-830.
https://doi.org/10.1176/appi.ajp.157.5.828
[36]  Kavoi, B., Makanya, A., Hassanali, J., Carlsson, H. and Kiama, S. (2010) Comparative Functional Structure of the Olfactory Mucosa in the Domestic Dog and Sheep. Annals of AnatomyAnatomischer Anzeiger, 192, 329-337.
https://doi.org/10.1016/j.aanat.2010.07.004
[37]  Veyseller, B., Ozucer, B., Aksoy, F., Yildirim, Y.S., Gürbüz, D., Balikçi, H.H., et al. (2012) Reduced Olfactory Bulb Volume and Diminished Olfactory Function in Total Laryngectomy Patients: A Prospective Longitudinal Study. American Journal of Rhinology & Allergy, 26, 191-193.
https://doi.org/10.2500/ajra.2012.26.3768
[38]  Opara, M.N. (2010) The Grasscutter I: A Livestock of Tomorrow. Research Journal of Forestry, 4, 119-135.
https://doi.org/10.3923/rjf.2010.119.135
[39]  Obadiah, B., Dzenda, T. and Wanmi, N. (2018) Lobulation Pattern of the of the Cerebellum of African Grasscutter (Thryonomys swinderianus). Nigerian Veterinary Journal, 39, 66-74.
https://doi.org/10.4314/nvj.v39i1.8
[40]  Byanet, O., Onyeanusi, B.I. and Ojo, S.A. (2012) Sex Differences in the Cerebellum and Its Correlates with Some Body Traits in the African Grasscutter (Thryonomys swinderianus-Temminck, 1827): Morphometric Study. Basic and Clinical Neuroscience, 3, 15-21.
[41]  Braitenberg, V. (1993) The Cerebellar Network: Attempt at a Formalization of Its Structure. Network: Computation in Neural Systems, 4, 11-17.
https://doi.org/10.1088/0954-898x_4_1_002
[42]  Kalinichenko, M. and Stepanenko, O. (2023) Shape and Surface Structure of the Human Cerebellum: Variant Anatomy. Acta Morphologica et Anthropologica, 30, 78-86.
https://doi.org/10.7546/ama.30.3-4.2023.10
[43]  Bernard, J.A. and Seidler, R.D. (2014) Moving Forward: Age Effects on the Cerebellum Underlie Cognitive and Motor Declines. Neuroscience & Biobehavioral Reviews, 42, 193-207.
https://doi.org/10.1016/j.neubiorev.2014.02.011
[44]  Koziol, L.F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., et al. (2013) Consensus Paper: The Cerebellum’s Role in Movement and Cognition. The Cerebellum, 13, 151-177.
https://doi.org/10.1007/s12311-013-0511-x
[45]  King, M., Hernandez-Castillo, C.R., Poldrack, R.A., Ivry, R.B. and Diedrichsen, J. (2019) Functional Boundaries in the Human Cerebellum Revealed by a Multi-Domain Task Battery. Nature Neuroscience, 22, 1371-1378.
https://doi.org/10.1038/s41593-019-0436-x
[46]  Schmahmann, J.D., Guell, X., Stoodley, C.J. and Halko, M.A. (2019) The Theory and Neuroscience of Cerebellar Cognition. Annual Review of Neuroscience, 42, 337-364.
https://doi.org/10.1146/annurev-neuro-070918-050258
[47]  Allen, G. and Courchesne, E. (2003) Differential Effects of Developmental Cerebellar Abnormality on Cognitive and Motor Functions in the Cerebellum: An fMRI Study of Autism. American Journal of Psychiatry, 160, 262-273.
https://doi.org/10.1176/appi.ajp.160.2.262
[48]  Seidler, R.D., Bernard, J.A., Burutolu, T.B., Fling, B.W., Gordon, M.T., Gwin, J.T., et al. (2010) Motor Control and Aging: Links to Age-Related Brain Structural, Functional, and Biochemical Effects. Neuroscience & Biobehavioral Reviews, 34, 721-733.
https://doi.org/10.1016/j.neubiorev.2009.10.005
[49]  Holviala, J., Kraemer, W.J., Sillanpää, E., Karppinen, H., Avela, J., Kauhanen, A., et al. (2011) Effects of Strength, Endurance and Combined Training on Muscle Strength, Walking Speed and Dynamic Balance in Aging Men. European Journal of Applied Physiology, 112, 1335-1347.
https://doi.org/10.1007/s00421-011-2089-7
[50]  Anguera, J.A., Reuter-Lorenz, P.A., Willingham, D.T. and Seidler, R.D. (2011) Failure to Engage Spatial Working Memory Contributes to Age-Related Declines in Visuomotor Learning. Journal of Cognitive Neuroscience, 23, 11-25.
https://doi.org/10.1162/jocn.2010.21451
[51]  Bo, J., Peltier, S.J., Noll, D.C. and Seidler, R.D. (2011) Age Differences in Symbolic Representations of Motor Sequence Learning. Neuroscience Letters, 504, 68-72.
https://doi.org/10.1016/j.neulet.2011.08.060
[52]  Shevelkin, A.V., Ihenatu, C. and Pletnikov, M.V. (2014) Pre-Clinical Models of Neurodevelopmental Disorders: Focus on the Cerebellum. Reviews in the Neurosciences, 25, 177-194.
https://doi.org/10.1515/revneuro-2013-0049

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133