|
高尿酸血症致冠心病作用机制研究进展
|
Abstract:
高尿酸血症(Hyperuricemia, HUA)是由于人体长期嘌呤代谢活跃,嘌呤摄入过多,或尿酸排泄障碍引起的代谢性疾病。研究表明,HUA通过多种信号通路及作用机制,促进了以冠心病为代表的心血管疾病病程的发展。但由于共病的多样性和致病因素的复杂性,降尿酸治疗是否有益于降低心血管事件的发生率仍存争议。文章综述近年来有关高尿酸血症致冠心病作用机制,以期为疾病的临床防治提供参考。
Hyperuricemia (HUA) is a metabolic disease caused by long-term active purine metabolism, excessive purine intake, or impaired excretion of uric acid. Studies have shown that HUA promotes the development of cardiovascular disease course represented by coronary heart disease through multiple signaling pathways and mechanisms of action. However, due to the diversity of comorbidities and the complexity of pathogenic factors, whether uric acid-lowering therapy is beneficial in reducing the incidence of cardiovascular events remains controversial. This article summarizes the mechanism of coronary heart disease caused by hyperuricemia in recent years, in order to provide reference for the clinical prevention and treatment of diseases.
[1] | Rao, J., Ye, P., Lu, J., Chen, B., Li, N., Zhang, H., et al. (2022) Prevalence and Related Factors of Hyperuricaemia in Chinese Children and Adolescents: A Pooled Analysis of 11 Population-Based Studies. Annals of Medicine, 54, 1608-1615. https://doi.org/10.1080/07853890.2022.2083670 |
[2] | Reunanen, A., Takkunen, H., Knekt, P. and Aromaa, A. (1982) Hyperuricemia as a Risk Factor for Cardiovascular Mortality. Acta Medica Scandinavica, 212, 49-59. https://doi.org/10.1111/j.0954-6820.1982.tb08521.x |
[3] | 刘程程, 谢苗荣. 高尿酸血症和降尿酸治疗对慢性病影响的研究进展[J]. 中国全科医学, 2018, 21(5): 501-507. |
[4] | MacIsaac, R.L., Salatzki, J., Higgins, P., Walters, M.R., Padmanabhan, S., Dominiczak, A.F., et al. (2016) Allopurinol and Cardiovascular Outcomes in Adults with Hypertension. Hypertension, 67, 535-540. https://doi.org/10.1161/hypertensionaha.115.06344 |
[5] | 方宁远, 吕力为, 吕晓希, 等. 中国高尿酸血症相关疾病诊疗多学科专家共识(2023年版) [J]. 中国实用内科杂志, 2023, 43(6): 461-480. |
[6] | 罗昭康, 崔晓慧, 张晓燕. 肾脏尿酸转运体的研究进展[J]. 生理科学进展, 2019, 50(3): 231-235. |
[7] | 张玄娥, 曲伸. 高尿酸血症的现代进化与多重性作用: 8 [J]. 中华内分泌代谢杂志, 2019, 35(8): 718-722. |
[8] | Sugihara, S., Hisatome, I., Kuwabara, M., Niwa, K., Maharani, N., Kato, M., et al. (2015) Depletion of Uric Acid Due to SLC22A12 (URAT1) Loss-of-Function Mutation Causes Endothelial Dysfunction in Hypouricemia. Circulation Journal, 79, 1125-1132. https://doi.org/10.1253/circj.cj-14-1267 |
[9] | Yu, Z., Zhang, S., Wang, D., Fan, M., Gao, F., Sun, W., et al. (2017) The Significance of Uric Acid in the Diagnosis and Treatment of Parkinson Disease: An Up-Dated Systemic Review. Medicine, 96, e8502. https://doi.org/10.1097/md.0000000000008502 |
[10] | Tana, C., Ticinesi, A., Prati, B., Nouvenne, A. and Meschi, T. (2018) Uric Acid and Cognitive Function in Older Individuals. Nutrients, 10, Article 975. https://doi.org/10.3390/nu10080975 |
[11] | 中国医师协会中西医结合分会心血管专业委员会, 中华中医药学会心血管病分会. 动脉粥样硬化中西医防治专家共识(2021年) [J]. 中国中西医结合杂志, 2022, 42(3): 287-293. |
[12] | Li, B., Chen, L., Hu, X., Tan, T., Yang, J., Bao, W., et al. (2022) Association of Serum Uric Acid with All-Cause and Cardiovascular Mortality in Diabetes. Diabetes Care, 46, 425-433. https://doi.org/10.2337/dc22-1339 |
[13] | Tian, X., Wang, A., Wu, S., Zuo, Y., Chen, S., Zhang, L., et al. (2021) Cumulative Serum Uric Acid and Its Time Course Are Associated with Risk of Myocardial Infarction and All‐cause Mortality. Journal of the American Heart Association, 10, e020180. https://doi.org/10.1161/jaha.120.020180 |
[14] | Unger, T., Borghi, C., Charchar, F., Khan, N.A., Poulter, N.R., Prabhakaran, D., et al. (2020) 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Journal of Hypertension, 38, 982-1004. https://doi.org/10.1097/hjh.0000000000002453 |
[15] | 骆莹莹, 姚树桐, 王大新, 等. 氧化应激在动脉粥样硬化发生发展中作用的研究新进展[J]. 中国介入心脏病学杂志, 2013, 21(1): 46-50. |
[16] | 郑建普, 高月红, 朱春赟, 等. 黄嘌呤氧化酶对血管内皮功能障碍的影响[J]. 中华高血压杂志, 2007, 15(1): 61-65. |
[17] | Sautin, Y.Y., Nakagawa, T., Zharikov, S. and Johnson, R.J. (2007) Adverse Effects of the Classic Antioxidant Uric Acid in Adipocytes: NADPH Oxidase-Mediated Oxidative/Nitrosative Stress. American Journal of Physiology-Cell Physiology, 293, C584-C596. https://doi.org/10.1152/ajpcell.00600.2006 |
[18] | Joosten, L.A.B., Crişan, T.O., Bjornstad, P. and Johnson, R.J. (2019) Asymptomatic Hyperuricaemia: A Silent Activator of the Innate Immune System. Nature Reviews Rheumatology, 16, 75-86. https://doi.org/10.1038/s41584-019-0334-3 |
[19] | Kimura, Y., Yanagida, T., Onda, A., Tsukui, D., Hosoyamada, M. and Kono, H. (2020) Soluble Uric Acid Promotes Atherosclerosis via AMPK (AMP-Activated Protein Kinase)-Mediated Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 570-582. https://doi.org/10.1161/atvbaha.119.313224 |
[20] | Yu, M., Sánchez-Lozada, L.G., Johnson, R.J. and Kang, D. (2010) Oxidative Stress with an Activation of the Renin-Angiotensin System in Human Vascular Endothelial Cells as a Novel Mechanism of Uric Acid-Induced Endothelial Dysfunction. Journal of Hypertension, 28, 1234-1242. https://doi.org/10.1097/hjh.0b013e328337da1d |
[21] | Zhou, Y., Zhao, M., Pu, Z., Xu, G. and Li, X. (2018) Relationship between Oxidative Stress and Inflammation in Hyperuricemia: Analysis Based on Asymptomatic Young Patients with Primary Hyperuricemia. Medicine, 97, e13108. https://doi.org/10.1097/md.0000000000013108 |
[22] | Park, J., Jin, Y.M., Hwang, S., Cho, D., Kang, D. and Jo, I. (2013) Uric Acid Attenuates Nitric Oxide Production by Decreasing the Interaction between Endothelial Nitric Oxide Synthase and Calmodulin in Human Umbilical Vein Endothelial Cells: A Mechanism for Uric Acid-Induced Cardiovascular Disease Development. Nitric Oxide, 32, 36-42. https://doi.org/10.1016/j.niox.2013.04.003 |
[23] | Riaz, M., Al Kury, L.T., Atzaz, N., Alattar, A., Alshaman, R., Shah, F.A., et al. (2022) Carvacrol Alleviates Hyperuricemia-Induced Oxidative Stress and Inflammation by Modulating the NLRP3/NF-κB Pathwayt. Drug Design, Development and Therapy, 16, 1159-1170. https://doi.org/10.2147/dddt.s343978 |
[24] | Yang, X., Gu, J., Lv, H., Li, H., Cheng, Y., Liu, Y., et al. (2019) Uric Acid Induced Inflammatory Responses in Endothelial Cells via Up-Regulating(pro)renin Receptor. Biomedicine & Pharmacotherapy, 109, 1163-1170. https://doi.org/10.1016/j.biopha.2018.10.129 |
[25] | Yu, M., Sánchez-Lozada, L.G., Johnson, R.J. and Kang, D. (2010) Oxidative Stress with an Activation of the Renin–angiotensin System in Human Vascular Endothelial Cells as a Novel Mechanism of Uric Acid-Induced Endothelial Dysfunction. Journal of Hypertension, 28, 1234-1242. https://doi.org/10.1097/hjh.0b013e328337da1d |