全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用于促进骨组织再生的导电生物材料的研究进展
Research Progress on Conductive Biomaterials for Promoting Bone Tissue Regeneration

DOI: 10.12677/acm.2024.14123091, PP. 375-381

Keywords: 导电生物材料,电刺激,骨组织工程,骨缺损
Conductive Biomaterials
, Electrical Stimulation, Bone Tissue Engineering, Bone Defects

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨缺损问题因创伤、感染、肿瘤和衰老等因素引发,严重影响患者的生活质量。内源性电场作为一种重要的生物物理信号,在维持骨稳态与促进再生方面具有重要作用,因此电刺激(ES)被认为是加速骨愈合的有效外部干预手段。导电生物材料通过产生电信号或在电刺激下调节其理化性质,既可作为细胞附着和结构支撑的支架材料,又能调控细胞行为及组织功能,因而在骨再生领域受到广泛关注。本文概述了骨组织中内源性电场的存在,探讨了导电生物材料(如碳基材料、金属材料和导电聚合物)的特性及其在介导电刺激上的优势,以及导电生物材料在调控骨组织修复中的潜在作用和最新进展,最后总结并讨论了导电生物材料在骨组织工程应用中面临的挑战与未来发展方向。
The problem of bone defects is caused by factors such as trauma, infection, tumors, and aging, which seriously affect the quality of life of patients. Endogenous electric fields, as an important biophysical signal, play a crucial role in maintaining bone homeostasis and promoting regeneration. Therefore, electrical stimulation (ES) is considered an effective external intervention to accelerate bone healing. Conductive biomaterials can serve as scaffold materials for cell adhesion and structural support, as well as regulate cell behavior and tissue function, by generating electrical signals or regulating their physicochemical properties under electrical stimulation. Therefore, they have received widespread attention in the field of bone regeneration. This article provides an overview of the existence of endogenous electric fields in bone tissue, explores the characteristics of conductive biomaterials (such as carbon-based materials, metal materials, and conductive polymers) and their advantages in mediating stimuli, as well as the potential role and latest progress of conductive biomaterials in regulating bone tissue repair. Finally, the challenges and future development directions of conductive biomaterials in bone tissue engineering applications are summarized and discussed.

References

[1]  Zhang, X., Koo, S., Kim, J.H., Huang, X., Kong, N., Zhang, L., et al. (2021) Nanoscale Materials-Based Platforms for the Treatment of Bone-Related Diseases. Matter, 4, 2727-2764.
https://doi.org/10.1016/j.matt.2021.05.019
[2]  Koons, G.L., Diba, M. and Mikos, A.G. (2020) Materials Design for Bone-Tissue Engineering. Nature Reviews Materials, 5, 584-603.
https://doi.org/10.1038/s41578-020-0204-2
[3]  Moroni, L., Burdick, J.A., Highley, C., Lee, S.J., Morimoto, Y., Takeuchi, S., et al. (2018) Biofabrication Strategies for 3D in vitro Models and Regenerative Medicine. Nature Reviews Materials, 3, 21-37.
https://doi.org/10.1038/s41578-018-0006-y
[4]  Huang, G., Li, F., Zhao, X., Ma, Y., Li, Y., Lin, M., et al. (2017) Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 117, 12764-12850.
https://doi.org/10.1021/acs.chemrev.7b00094
[5]  Li, Y., Xiao, Y. and Liu, C. (2017) The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chemical Reviews, 117, 4376-4421.
https://doi.org/10.1021/acs.chemrev.6b00654
[6]  Katz, B. and Miledi, R. (1965) Release of Acetylcholine from a Nerve Terminal by Electric Pulses of Variable Strength and Duration. Nature, 207, 1097-1098.
https://doi.org/10.1038/2071097a0
[7]  Kang, Y.G., Wei, J., Shin, J.W., Wu, Y.R., Su, J., Park, Y.S., et al. (2018) Enhanced Biocompatibility and Osteogenic Potential of Mesoporous Magnesium Silicate/Polycaprolactone/Wheat Protein Composite Scaffolds. International Journal of Nanomedicine, 13, 1107-1117.
https://doi.org/10.2147/ijn.s157921
[8]  Minary-Jolandan, M. and Yu, M. (2009) Uncovering Nanoscale Electromechanical Heterogeneity in the Subfibrillar Structure of Collagen Fibrils Responsible for the Piezoelectricity of Bone. ACS Nano, 3, 1859-1863.
https://doi.org/10.1021/nn900472n
[9]  Kong, L. and Chen, W. (2013) Carbon Nanotube and Graphene‐Based Bioinspired Electrochemical Actuators. Advanced Materials, 26, 1025-1043.
https://doi.org/10.1002/adma.201303432
[10]  Thrivikraman, G., Lee, P.S., Hess, R., Haenchen, V., Basu, B. and Scharnweber, D. (2015) Interplay of Substrate Conductivity, Cellular Microenvironment, and Pulsatile Electrical Stimulation toward Osteogenesis of Human Mesenchymal Stem Cells in vitro. ACS Applied Materials & Interfaces, 7, 23015-23028.
https://doi.org/10.1021/acsami.5b06390
[11]  Nauth, A., Schemitsch, E., Norris, B., Nollin, Z. and Watson, J.T. (2018) Critical-Size Bone Defects: Is There a Consensus for Diagnosis and Treatment? Journal of Orthopaedic Trauma, 32, S7-S11.
https://doi.org/10.1097/bot.0000000000001115
[12]  Liu, Z., Wan, X., Wang, Z.L. and Li, L. (2021) Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. Advanced Materials, 33, Article 2007429.
https://doi.org/10.1002/adma.202007429
[13]  Marino, A.A., Becker, R.O. and Soderholm, S.C. (1971) Origin of the Piezoelectric Effect in Bone. Calcified Tissue Research, 8, 177-180.
https://doi.org/10.1007/bf02010135
[14]  Kinloch, I.A., Suhr, J., Lou, J., Young, R.J. and Ajayan, P.M. (2018) Composites with Carbon Nanotubes and Graphene: An Outlook. Science, 362, 547-553.
https://doi.org/10.1126/science.aat7439
[15]  Dutta, R.C., Dey, M., Dutta, A.K. and Basu, B. (2017) Competent Processing Techniques for Scaffolds in Tissue Engineering. Biotechnology Advances, 35, 240-250.
https://doi.org/10.1016/j.biotechadv.2017.01.001
[16]  Chen, J., Fan, T., Xie, Z., Zeng, Q., Xue, P., Zheng, T., et al. (2020) Advances in Nanomaterials for Photodynamic Therapy Applications: Status and Challenges. Biomaterials, 237, Article 119827.
https://doi.org/10.1016/j.biomaterials.2020.119827
[17]  Baei, P., Jalili-Firoozinezhad, S., Rajabi-Zeleti, S., Tafazzoli-Shadpour, M., Baharvand, H. and Aghdami, N. (2016) Electrically Conductive Gold Nanoparticle-Chitosan Thermosensitive Hydrogels for Cardiac Tissue Engineering. Materials Science and Engineering: C, 63, 131-141.
https://doi.org/10.1016/j.msec.2016.02.056
[18]  Pan, S., Liu, W., Tang, J., Yang, Y., Feng, H., Qian, Z., et al. (2018) Hydrophobicity-Guided Self-Assembled Particles of Silver Nanoclusters with Aggregation-Induced Emission and Their Use in Sensing and Bioimaging. Journal of Materials Chemistry B, 6, 3927-3933.
https://doi.org/10.1039/c8tb00463c
[19]  Zhang, Y., Wang, Y., Jiang, Q., El‐Demellawi, J.K., Kim, H. and Alshareef, H.N. (2020) MXene Printing and Patterned Coating for Device Applications. Advanced Materials, 32, Article 1908486.
https://doi.org/10.1002/adma.201908486
[20]  Engler, A.J., Carag-Krieger, C., Johnson, C.P., Raab, M., Tang, H., Speicher, D.W., et al. (2008) Embryonic Cardiomyocytes Beat Best on a Matrix with Heart-Like Elasticity: Scar-Like Rigidity Inhibits Beating. Journal of Cell Science, 121, 3794-3802.
https://doi.org/10.1242/jcs.029678
[21]  Tang, C., Zhou, J., Qian, Z., Ma, Y., Huang, Y. and Feng, H. (2017) A Universal Fluorometric Assay Strategy for Glycosidases Based on Functional Carbon Quantum Dots: β-Galactosidase Activity Detection in Vitro and in Living Cells. Journal of Materials Chemistry B, 5, 1971-1979.
https://doi.org/10.1039/c6tb03361j
[22]  Han, Y., Zhang, F., Zhang, J., Shao, D., Wang, Y., Li, S., et al. (2019) Bioactive Carbon Dots Direct the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Colloids and Surfaces B: Biointerfaces, 179, 1-8.
https://doi.org/10.1016/j.colsurfb.2019.03.035
[23]  Lam, C., James, J.T., McCluskey, R., Arepalli, S. and Hunter, R.L. (2006) A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks. Critical Reviews in Toxicology, 36, 189-217.
https://doi.org/10.1080/10408440600570233
[24]  Wang, H., Su, W. and Tan, M. (2020) Endogenous Fluorescence Carbon Dots Derived from Food Items. The Innovation, 1, Article 100009.
https://doi.org/10.1016/j.xinn.2020.04.009
[25]  Peng, Z., Miyanji, E.H., Zhou, Y., Pardo, J., Hettiarachchi, S.D., Li, S., et al. (2017) Carbon Dots: Promising Biomaterials for Bone-Specific Imaging and Drug Delivery. Nanoscale, 9, 17533-17543.
https://doi.org/10.1039/c7nr05731h
[26]  Glenske, K., Donkiewicz, P., Köwitsch, A., Milosevic-Oljaca, N., Rider, P., Rofall, S., et al. (2018) Applications of Metals for Bone Regeneration. International Journal of Molecular Sciences, 19, Article 826.
https://doi.org/10.3390/ijms19030826
[27]  Li, Y., Chen, B., Li, X., Zhang, W.K. and Tang, H. (2014) Cytotoxicity of Polyaniline Nanomaterial on Rat Celiac Macrophages in Vitro. PLOS ONE, 9, e107361.
https://doi.org/10.1371/journal.pone.0107361
[28]  Murillo, G., Blanquer, A., Vargas‐Estevez, C., Barrios, L., Ibáñez, E., Nogués, C., et al. (2017) Electromechanical Nanogenerator-Cell Interaction Modulates Cell Activity. Advanced Materials, 29, Article 1605048.
https://doi.org/10.1002/adma.201605048
[29]  Murphy, W.L., McDevitt, T.C. and Engler, A.J. (2014) Materials as Stem Cell Regulators. Nature Materials, 13, 547-557.
https://doi.org/10.1038/nmat3937
[30]  Özkucur, N., Monsees, T.K., Perike, S., Do, H.Q. and Funk, R.H.W. (2009) Local Calcium Elevation and Cell Elongation Initiate Guided Motility in Electrically Stimulated Osteoblast-Like Cells. PLOS ONE, 4, e6131.
https://doi.org/10.1371/journal.pone.0006131
[31]  Clark, C.C., Wang, W. and Brighton, C.T. (2014) Up‐Regulation of Expression of Selected Genes in Human Bone Cells with Specific Capacitively Coupled Electric Fields. Journal of Orthopaedic Research, 32, 894-903.
https://doi.org/10.1002/jor.22595
[32]  Ercan, B. and Webster, T.J. (2010) The Effect of Biphasic Electrical Stimulation on Osteoblast Function at Anodized Nanotubular Titanium Surfaces. Biomaterials, 31, 3684-3693.
https://doi.org/10.1016/j.biomaterials.2010.01.078
[33]  Thrivikraman, G., Boda, S.K. and Basu, B. (2018) Unraveling the Mechanistic Effects of Electric Field Stimulation Towards Directing Stem Cell Fate and Function: A Tissue Engineering Perspective. Biomaterials, 150, 60-86.
https://doi.org/10.1016/j.biomaterials.2017.10.003
[34]  Liu, Y., Zhang, X., Cao, C., Zhang, Y., Wei, J., Li, Y.J., et al. (2017) Built‐In Electric Fields Dramatically Induce Enhancement of Osseointegration. Advanced Functional Materials, 27, Article 1703771.
https://doi.org/10.1002/adfm.201703771
[35]  Creecy, C.M., O’Neill, C.F., Arulanandam, B.P., Sylvia, V.L., Navara, C.S. and Bizios, R. (2013) Mesenchymal Stem Cell Osteodifferentiation in Response to Alternating Electric Current. Tissue Engineering Part A, 19, 467-474.
https://doi.org/10.1089/ten.tea.2012.0091
[36]  Pina, S., Oliveira, J.M. and Reis, R.L. (2015) Natural‐Based Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: A Review. Advanced Materials, 27, 1143-1169.
https://doi.org/10.1002/adma.201403354
[37]  Tatavarty, R., Ding, H., Lu, G., Taylor, R.J. and Bi, X. (2014) Synergistic Acceleration in the Osteogenesis of Human Mesenchymal Stem Cells by Graphene Oxide-Calcium Phosphate Nanocomposites. Chemical Communications, 50, 8484-8487.
https://doi.org/10.1039/c4cc02442g
[38]  Kumar, A., Nune, K.C. and Misra, R.D.K. (2016) Electric Field-Mediated Growth of Osteoblasts—The Significant Impact of Dynamic Flow of Medium. Biomaterials Science, 4, 136-144.
https://doi.org/10.1039/c5bm00350d
[39]  Mooney, E., Dockery, P., Greiser, U., Murphy, M. and Barron, V. (2008) Carbon Nanotubes and Mesenchymal Stem Cells: Biocompatibility, Proliferation and Differentiation. Nano Letters, 8, 2137-2143.
https://doi.org/10.1021/nl073300o
[40]  Liu, D., Yi, C., Zhang, D., Zhang, J. and Yang, M. (2010) Inhibition of Proliferation and Differentiation of Mesenchymal Stem Cells by Carboxylated Carbon Nanotubes. ACS Nano, 4, 2185-2195.
https://doi.org/10.1021/nn901479w
[41]  Chen, J., Ning, C., Zhou, Z., Yu, P., Zhu, Y., Tan, G., et al. (2019) Nanomaterials as Photothermal Therapeutic Agents. Progress in Materials Science, 99, 1-26.
https://doi.org/10.1016/j.pmatsci.2018.07.005
[42]  Sun, M., Deng, Z., Shi, F., Zhou, Z., Jiang, C., Xu, Z., et al. (2020) Rebamipide-Loaded Chitosan Nanoparticles Accelerate Prostatic Wound Healing by Inhibiting M1 Macrophage-Mediated Inflammation via the NF-κB Signaling Pathway. Biomaterials Science, 8, 912-925.
https://doi.org/10.1039/c9bm01512d

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133