|
Modern Management 2024
基于BP神经网络的农业企业信用风险测度模型研究
|
Abstract:
随着近年来农业企业面临的复杂金融环境,如何测度农业企业的信用风险是成为了愈来愈重要的问题。本文旨在探索一种基于BP神经网络的农业企业信用风险测度模型,选取了2023年共316家财务数据健全且具有代表性的农业企业,选取了财务结构、偿债能力、盈利能力、运营效率四个一级大类指标的17个二级指标构建各农业企业信用风险评估指标体系。使用BP神经网络和SVM支持向量机进行二元回归,分别对比了XGBoost二元回归模型、分类树模型(DT)、朴素贝叶斯模型(NB)、随机森林(RF)回归模型。结果显示BP神经网络模型对于企业信用风险测度指标拥有更好的回归能力,且在性能和精度上优于其他模型。
With the increasingly complex financial environment faced by agricultural enterprises in recent years, measuring the credit risk of agricultural enterprises has become an increasingly important issue. This paper aims to explore a credit risk measurement model for agricultural enterprises based on BP neural networks. A total of 316 financially sound and representative agricultural enterprises’ data from 2023 were selected, and a credit risk assessment index system for agricultural enterprises was constructed, consisting of 17 secondary indicators across four primary categories: financial structure, debt-paying ability, profitability, and operational efficiency. Binary regression was conducted using BP neural networks and SVM support vector machines, and compared with XGBoost binary regression model, Decision Tree (DT) model, Naive Bayes (NB) model, and Random Forest (RF) regression model. The results show that the BP neural network model has better regression capability for enterprise credit risk measurement indicators and outperforms other models in terms of performance and accuracy.
[1] | 付玮琼. 供应链金融视角下中小农业企业信用风险预警及防范研究[J]. 贵州社会科学, 2020(4): 158-168. |
[2] | 孙中叶, 徐晓燕. 农业供应链金融风险评估研究——基于GA-BP神经网络模型[J]. 技术经济与管理研究, 2021(8): 78-82. |
[3] | 杨军, 房姿含. 供应链金融视角下农业中小企业融资模式及信用风险研究[J]. 农业技术经济, 2017(9): 95-104. |
[4] | 刘玎琳, 赵湘莲, 田月红. 基于KMV模型的农业上市公司信用风险测度研究[J]. 数学的实践与认识, 2014, 44(12): 32-39. |
[5] | 鲁仕宝, 黄强, 王义民, 等. 农业水利基础设施建设投资主体的信用风险评估[J]. 系统工程理论与实践, 2010, 30(7): 1299-1304. |
[6] | 王瑶, 罗剑朝. 农业银行信用风险实证研究[J]. 广东农业科学, 2010, 37(4): 377-379. |
[7] | 李光荣. 农业供应链金融信用风险致因研究: 系统框架与实证分析——来自黄河中上游五省区的780份调查数据[J]. 财经理论与实践, 2020, 41(3): 17-24. |
[8] | 李延敏, 章敏. 农业产业化龙头企业信用风险评价的改进——基于农村金融联结视角[J]. 农林经济管理学报, 2016, 15(5): 532-538. |
[9] | 汪小华. 农业供应链金融信用风险的评价及控制研究[J]. 农业经济, 2015(12): 110-111. |
[10] | 霍丽君, 宋瑞敏, 申卓明. KMV模型在农业上市公司信用风险度量中的应用[J]. 财会月刊, 2011(5): 56-58. |
[11] | Chen, B. and Long, S. (2020) A Novel End-to-End Corporate Credit Rating Model Based on Self-Attention Mechanism. IEEE Access, 8, 203876-203889. https://doi.org/10.1109/access.2020.3036469 |
[12] | Cai, S. and Zhang, J. (2020) Exploration of Credit Risk of P2P Platform Based on Data Mining Technology. Journal of Computational and Applied Mathematics, 372, Article ID: 112718. https://doi.org/10.1016/j.cam.2020.112718 |
[13] | Dastile, X., Celik, T. and Potsane, M. (2020) Statistical and Machine Learning Models in Credit Scoring: A Systematic Literature Survey. Applied Soft Computing, 91, Article ID: 106263. https://doi.org/10.1016/j.asoc.2020.106263 |
[14] | Tsai, C. and Chen, M. (2010) Credit Rating by Hybrid Machine Learning Techniques. Applied Soft Computing, 10, 374-380. https://doi.org/10.1016/j.asoc.2009.08.003 |
[15] | Shen, F., Zhao, X., Kou, G. and Alsaadi, F.E. (2021) A New Deep Learning Ensemble Credit Risk Evaluation Model with an Improved Synthetic Minority Oversampling Technique. Applied Soft Computing, 98, Article ID: 106852. https://doi.org/10.1016/j.asoc.2020.106852 |
[16] | Guo, S., He, H. and Huang, X. (2019) A Multi-Stage Self-Adaptive Classifier Ensemble Model with Application in Credit Scoring. IEEE Access, 7, 78549-78559. https://doi.org/10.1109/access.2019.2922676 |
[17] | Babaev, D., Savchenko, M., Tuzhilin, A. and Umerenkov, D. (2019) E.T.-RNN: Applying Deep Learning to Credit Loan Applications. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, 4-8 August 2019, 2183-2190. https://doi.org/10.1145/3292500.3330693 |
[18] | Lai, L. (2020) Loan Default Prediction with Machine Learning Techniques. 2020 International Conference on Computer Communication and Network Security (CCNS), Xi’an, 21-23 August 2020, 5-9. https://doi.org/10.1109/ccns50731.2020.00009 |
[19] | Götze, T., Gürtler, M. and Witowski, E. (2020) Improving CAT Bond Pricing Models via Machine Learning. Journal of Asset Management, 21, 428-446. https://doi.org/10.1057/s41260-020-00167-0 |
[20] | 吕慧如, 吴凯诗, 吴宇章. 基于XGboost模型的农业供应链金融信用风险测度研究[J]. 科技和产业, 2024, 24(4): 63-67. |
[21] | 陈琪, 王洪生, 赵庆功. 农业供应链金融视角下核心企业信用风险实证研究[J]. 科技和产业, 2021, 21(9): 82-88. |