This study presents a contribution to the development of a model for vegetable oil droplets vaporization, with a particular focus on the influence of the experimental set-up for their use as fuel in diesel engines. Two systems were considered: an open-environment system obtained through a hot gas flow, and a closed-environment system. Vaporization was conducted under identical conditions, with the results subsequently compared. The findings indicate that, for temperatures between 473 K and 673 K, droplets behaviour in both systems presents only a heating and expansion phase. For temperatures above 673 K, the behaviour of the droplets differs between the devices. In the open environment device, a linear reduction in droplets diameter is observed following the transient phase, suggesting stationary vaporization and enabling the calculation of a vaporization constant and the well-known D2 law is respected. In the closed-environment device, puffing, micro-explosions and gas ejections are observed, and it is not possible to determine vaporization constant and D2 law is not respected. The results demonstrate the necessity of developing a model for the thermal decomposition of vegetable oil before attempting to create a model for the vaporization of these oils. In order to achieve this, it is essential to construct an experimental setup that more closely emulates the real conditions within the combustion chamber of a diesel engine, taking into account the variables of pressure, temperature and the heating process.
References
[1]
Criqui, P. (2013) L’énergie à découvert. CNRS Éditions.
[2]
Aloui, D., Benkraiem, R., Guesmi, K. and Mzoughi, H. (2023) Managing Natural Resource Prices in a Geopolitical Risk Environment. ResourcesPolicy, 83, Article ID: 103628. https://doi.org/10.1016/j.resourpol.2023.103628
[3]
Bórawski, P., Bełdycka-Bórawska, A., Szymańska, E.J., Jankowski, K.J., Dubis, B. and Dunn, J.W. (2019) Development of Renewable Energy Sources Market and Biofuels in the European Union. JournalofCleanerProduction, 228, 467-484. https://doi.org/10.1016/j.jclepro.2019.04.242
[4]
Jha, P. and Schmidt, S. (2021) State of Biofuel Development in Sub-Saharan Africa: How Far Sustainable? RenewableandSustainableEnergyReviews, 150, Article ID: 111432. https://doi.org/10.1016/j.rser.2021.111432
[5]
Hartmann, R.M., Garzon, N.N., Hartmann, E.M., Oliveira, A.A.M. and Bazzo, E. (2013) Vegetable Oils of Soybean, Sunflower and Tung as Alternative Fuels for Compression Ignition Engines. InternationalJournalofThermodynamics, 16, 87-96.
[6]
Patel, S. and Shrivastava, N. (2017) Use of Vegetable Oil as a Fuel in Diesel Engine—A Review. Biofuels and Bioenergy (BICE2016) International Conference, Bhopal, 23-25 February 2016, 241-259. https://doi.org/10.1007/978-3-319-47257-7_22
[7]
Delalibera, H.C., Johann, A.L., Figueiredo, P.R.A.d., Toledo, A.d., Weirich Neto, P.H. and Ralisch, R. (2017) Performance of Diesel Engine Fuelled with Four Vegetable Oils, Preheated and at Engine Working Temperature. EngenhariaAgrícola, 37, 302-314. https://doi.org/10.1590/1809-4430-eng.agric.v37n2p302-314/2017
[8]
Angaye, S.S. and Maduelosi, N.J. (2015) Comparative Study of the Physicochemical Properties of Some Refined Vegetable Oils Sold in Mile One Market and Some Departmental Stores in Port Harcourt, Rivers State, Nigeria. FoodScienceandQualityManagement, 39, 16-19.
[9]
Toscano, G. and Maldini, E. (2007) Analysis of the Physical and Chemical Characteristics of Vegetable Oils as Fuel. JournalofAgriculturalEngineering, 38, 39.
[10]
Zongo, A.S., Daho, T., Vaitilingom, G., Piriou, B., Valette, J., Caillol, C., et al. (2018) The Effect of Atmospheric Oxygen on the Puffing and Bursting Phenomena during Vegetable Oils Droplets Vaporization Process for Their Use as Biofuel in Diesel Engine. EnergyandPowerEngineering, 10, 518-533. https://doi.org/10.4236/epe.2018.1012033
[11]
Daho, T., Vaitilingom, G., Sanogo, O., Ouiminga, S.K., Segda, B.G., Valette, J., et al. (2012) Study of Droplet Vaporization of Various Vegetable Oils and Blends of Domestic Fuel Oil-Cottonseed Oil under Different Ambient Temperature Conditions. BiomassandBioenergy, 46, 653-663. https://doi.org/10.1016/j.biombioe.2012.06.031
[12]
Daho, T., Vaitilingom, G., Sanogo, O., Ouiminga, S.K., Segda, B.G., Valette, J., et al. (2012) Model for Predicting Evaporation Characteristics of Vegetable Oils Droplets Based on Their Fatty Acid Composition. InternationalJournalofHeatandMassTransfer, 55, 2864-2871. https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.048
[13]
Godsave, G.A.E. (1953) Studies of the Combustion of Drops in a Fuel Spray—The Burning of Single Drops of Fuel. Symposium (International) onCombustion, 4, 818-830. https://doi.org/10.1016/s0082-0784(53)80107-4
[14]
Botero, M.L. and Molina, A. (2017) Experimental and Numerical Study of Palm Oil and Castor Oil Biodiesel Droplet Evaporation. CT&F—Ciencia, TecnologíayFuturo, 6, 83-94. https://doi.org/10.29047/01225383.76
[15]
Morin, C. (1999) Vaporization et oxydation a haute temperature et haute pression de gouttes de combustibles liquides: Application aux n-alcanes et esters methyliques d’huiles vegetales. Université d’Orléans.
[16]
Chesneau, X. (1994) Vaporization et combustion de gouttes isolées de combustibles liquides. Influence de la pression. Université d’Orléans.
[17]
Higelin, P. (1992) Huiles végétales—Biocombustible diesel: Incidence des aspects thermiques liés au type de moteur sur la combustion. University of Orleans.
[18]
Vanhemelryck, J.L. (1997) Influence de la modification des propriétés du carburant dans les moteurs diesel à injection directe: Application aux huiles végétales et à leurs dérivés. Thèse de doctorat, Université catholique de Louvain.
[19]
Vaitilingom, G. (1992) Huiles végétales—Biocombustibles diesel: Influence de la nature des huiles et en particulier de leur composition en acides gras sur la qualité-carburant. University of Orleans.
[20]
Daho, T. (2008) Contribution à l’étude des conditions optimales de combustion des huiles végétales dans les moteurs diesel et sur les brûleurs: Cas de l’huile de coton. Université de Ouagadougou.
[21]
Zongo, A.S. (2015) Etude des processus physiques et chimiques mis en jeu lors de la combustion des huiles végétales pures dans les moteurs diesel: Mécanismes de décomposition et de polymérisation. Universite de Ouagadougou.
[22]
Chauveau, C., Birouk, M., Halter, F. and Gökalp, I. (2019) An Analysis of the Droplet Support Fiber Effect on the Evaporation Process. InternationalJournalofHeatandMassTransfer, 128, 885-891. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.029
Wang, J., Wang, X., Chen, H., Jin, Z. and Xiang, K. (2018) Experimental Study on Puffing and Evaporation Characteristics of Jatropha Straight Vegetable Oil (SVO) Droplets. InternationalJournalofHeatandMassTransfer, 119, 392-399. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.130
[25]
Ra, Y. and Reitz, R.D. (2009) A Vaporization Model for Discrete Multi-Component Fuel Sprays. InternationalJournalofMultiphaseFlow, 35, 101-117. https://doi.org/10.1016/j.ijmultiphaseflow.2008.10.006