全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钙钛矿/硅叠层太阳能电池:见解与展望
Perovskite/Silicon Tandem Solar Cells: Insights and Outlook

DOI: 10.12677/app.2024.1412081, PP. 753-764

Keywords: 叠层太阳能电池,双面叠层太阳能电池,寄生吸收,反射损耗,电流匹配
Tandem Solar Cells
, Bifacial Tandem Solar Cells, Parasitic Absorption, Reflection Loss, Current Matching

Full-Text   Cite this paper   Add to My Lib

Abstract:

有机–无机杂化钙钛矿具有可调带隙、高光吸收系数和较高的功率转换效率等优点,在硅基叠层太阳能电池中得到了广泛的应用。然而,钙钛矿/硅叠层太阳能电池的最大功率转换效率仍低于理论极限。本文介绍了钙钛矿/硅叠层太阳能电池的工作原理、对钙钛矿/晶硅叠层电池的类别、影响其性能的主要因素进行了归纳综述。此外,还强调了,对于双面性的叠层电池结构,4-T叠层可能比2-T叠层更具吸引力。
Organic-inorganic hybrid perovskites have been extensively used in silicon-based tandem solar cells due to their adjustable bandgap, high light absorption coefficient, and enhanced power conversion efficiency. However, the maximum power conversion efficiency of perovskite/silicon tandem solar cells remains below the theoretical limit. This study introduces the working principle of perovskite/silicon tandem solar cells and provides a comprehensive review of the types of perovskite/crystalline silicon tandem cells and the primary factors affecting their performance. Additionally, it emphasizes that for bifacial tandem cell structures, 4-T tandems may be more attractive than 2-T tandems.

References

[1]  Xu, T., Chen, Y. and Chen, Q. (2022) Improving Intrinsic Stability for Perovskite/Silicon Tandem Solar Cells. Science China Physics, Mechanics & Astronomy, 66, Article No. 217305.
https://doi.org/10.1007/s11433-022-1959-4
[2]  Shockley, W. and Queisser, H. (2018) Detailed Balance Limit of Efficiency of P-n Junction Solar Cells. In: Sorensen, B., Ed., Renewable Energy, Routledge, 35-54.
https://doi.org/10.4324/9781315793245-44
[3]  Duan, L., Walter, D., Chang, N., Bullock, J., Kang, D., Phang, S.P., et al. (2023) Stability Challenges for the Commercialization of Perovskite-Silicon Tandem Solar Cells. Nature Reviews Materials, 8, 261-281.
https://doi.org/10.1038/s41578-022-00521-1
[4]  Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L. and Meredith, P. (2014) Electro-Optics of Perovskite Solar Cells. Nature Photonics, 9, 106-112.
https://doi.org/10.1038/nphoton.2014.284
[5]  McMeekin, D.P., Sadoughi, G., Rehman, W., Eperon, G.E., Saliba, M., Hörantner, M.T., et al. (2016) A Mixed-Cation Lead Mixed-Halide Perovskite Absorber for Tandem Solar Cells. Science, 351, 151-155.
https://doi.org/10.1126/science.aad5845
[6]  Ying, Z., Yang, X., Wang, X. and Ye, J. (2024) Towards the 10‐Year Milestone of Monolithic Perovskite/Silicon Tandem Solar Cells. Advanced Materials, 36, Article 2311501.
https://doi.org/10.1002/adma.202311501
[7]  Wang, R., Huang, T., Xue, J., Tong, J., Zhu, K. and Yang, Y. (2021) Prospects for Metal Halide Perovskite-Based Tandem Solar Cells. Nature Photonics, 15, 411-425.
https://doi.org/10.1038/s41566-021-00809-8
[8]  Li, Z., Zhao, Y., Wang, X., Sun, Y., Zhao, Z., Li, Y., et al. (2018) Cost Analysis of Perovskite Tandem Photovoltaics. Joule, 2, 1559-1572.
https://doi.org/10.1016/j.joule.2018.05.001
[9]  Shi, Y., Berry, J.J. and Zhang, F. (2024) Perovskite/Silicon Tandem Solar Cells: Insights and Outlooks. ACS Energy Letters, 9, 1305-1330.
https://doi.org/10.1021/acsenergylett.4c00172
[10]  Leijtens, T., Bush, K.A., Prasanna, R. and McGehee, M.D. (2018) Opportunities and Challenges for Tandem Solar Cells Using Metal Halide Perovskite Semiconductors. Nature Energy, 3, 828-838.
https://doi.org/10.1038/s41560-018-0190-4
[11]  Xu, J., Boyd, C.C., Yu, Z.J., Palmstrom, A.F., Witter, D.J., Larson, B.W., et al. (2020) Triple-Halide Wide-Band Gap Perovskites with Suppressed Phase Segregation for Efficient Tandems. Science, 367, 1097-1104.
https://doi.org/10.1126/science.aaz5074
[12]  Al-Ashouri, A., Magomedov, A., Roß, M., Jošt, M., Talaikis, M., Chistiakova, G., et al. (2019) Conformal Monolayer Contacts with Lossless Interfaces for Perovskite Single Junction and Monolithic Tandem Solar Cells. Energy & Environmental Science, 12, 3356-3369.
https://doi.org/10.1039/c9ee02268f
[13]  Futscher, M.H. and Ehrler, B. (2016) Efficiency Limit of Perovskite/Si Tandem Solar Cells. ACS Energy Letters, 1, 863-868.
https://doi.org/10.1021/acsenergylett.6b00405
[14]  Tong, J., Jiang, Q., Zhang, F., Kang, S.B., Kim, D.H. and Zhu, K. (2020) Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells. ACS Energy Letters, 6, 232-248.
https://doi.org/10.1021/acsenergylett.0c02105
[15]  Subbiah, A.S., Isikgor, F.H., Howells, C.T., De Bastiani, M., Liu, J., Aydin, E., et al. (2020) High-Performance Perovskite Single-Junction and Textured Perovskite/Silicon Tandem Solar Cells via Slot-Die-Coating. ACS Energy Letters, 5, 3034-3040.
https://doi.org/10.1021/acsenergylett.0c01297
[16]  Zhu, Z., Mao, K. and Xu, J. (2021) Perovskite Tandem Solar Cells with Improved Efficiency and Stability. Journal of Energy Chemistry, 58, 219-232.
https://doi.org/10.1016/j.jechem.2020.09.022
[17]  Wang, Y., Wang, Y., Gao, F. and Yang, D. (2023) Efficient Monolithic Perovskite/Silicon Tandem Photovoltaics. Energy & Environmental Materials, 7, e12639.
https://doi.org/10.1002/eem2.12639
[18]  Chi, W., Banerjee, S.K., Jayawardena, K.G.D.I., Silva, S.R.P. and Seok, S.I. (2023) Perovskite/Silicon Tandem Solar Cells: Choice of Bottom Devices and Recombination Layers. ACS Energy Letters, 8, 1535-1550.
https://doi.org/10.1021/acsenergylett.2c02725
[19]  Hossain, M.I., Qarony, W., Ma, S., Zeng, L., Knipp, D. and Tsang, Y.H. (2019) Perovskite/Silicon Tandem Solar Cells: From Detailed Balance Limit Calculations to Photon Management. Nano-Micro Letters, 11, Article No. 58.
https://doi.org/10.1007/s40820-019-0287-8
[20]  Polman, A., Knight, M., Garnett, E.C., Ehrler, B. and Sinke, W.C. (2016) Photovoltaic Materials: Present Efficiencies and Future Challenges. Science, 352, aad4424.
https://doi.org/10.1126/science.aad4424
[21]  Wu, Y., Yan, D., Peng, J., Duong, T., Wan, Y., Phang, S.P., et al. (2017) Monolithic Perovskite/Silicon-Homojunction Tandem Solar Cell with over 22% Efficiency. Energy & Environmental Science, 10, 2472-2479.
https://doi.org/10.1039/c7ee02288c
[22]  Werner, J., Barraud, L., Walter, A., Bräuninger, M., Sahli, F., Sacchetto, D., et al. (2016) Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Letters, 1, 474-480.
https://doi.org/10.1021/acsenergylett.6b00254
[23]  Raza, E. and Ahmad, Z. (2022) Review on Two-Terminal and Four-Terminal Crystalline-Silicon/Perovskite Tandem Solar Cells; Progress, Challenges, and Future Perspectives. Energy Reports, 8, 5820-5851.
https://doi.org/10.1016/j.egyr.2022.04.028
[24]  Dupré, O., Niesen, B., De Wolf, S. and Ballif, C. (2018) Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices. The Journal of Physical Chemistry Letters, 9, 446-458.
https://doi.org/10.1021/acs.jpclett.7b02277
[25]  Qiu, Z., Xu, Z., Li, N., Zhou, N., Chen, Y., Wan, X., et al. (2018) Monolithic Perovskite/Si Tandem Solar Cells Exceeding 22% Efficiency via Optimizing Top Cell Absorber. Nano Energy, 53, 798-807.
https://doi.org/10.1016/j.nanoen.2018.09.052
[26]  Kim, D., Jung, H.J., Park, I.J., Larson, B.W., Dunfield, S.P., Xiao, C., et al. (2020) Efficient, Stable Silicon Tandem Cells Enabled by Anion-Engineered Wide-Bandgap Perovskites. Science, 368, 155-160.
https://doi.org/10.1126/science.aba3433
[27]  Wang, S., Guo, H. and Wu, Y. (2023) Advantages and Challenges of Self-Assembled Monolayer as a Hole-Selective Contact for Perovskite Solar Cells. Materials Futures, 2, Article 012105.
https://doi.org/10.1088/2752-5724/acbb5a
[28]  Green, M.A., Dunlop, E.D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., et al. (2024) Solar Cell Efficiency Tables (Version 64). Progress in Photovoltaics: Research and Applications, 32, 425-441.
https://doi.org/10.1002/pip.3831
[29]  Xu, L., Xu, F., Liu, J., Zhang, X., Subbiah, A.S. and De Wolf, S. (2023) Bandgap Optimization for Bifacial Tandem Solar Cells. ACS Energy Letters, 8, 3114-3121.
https://doi.org/10.1021/acsenergylett.3c01014
[30]  Werner, J., Niesen, B. and Ballif, C. (2017) Perovskite/Silicon Tandem Solar Cells: Marriage of Convenience or True Love Story?—An Overview. Advanced Materials Interfaces, 5, Article 1700731.
https://doi.org/10.1002/admi.201700731
[31]  Yamaguchi, M., Lee, K., Araki, K. and Kojima, N. (2018) A Review of Recent Progress in Heterogeneous Silicon Tandem Solar Cells. Journal of Physics D: Applied Physics, 51, Article 133002.
https://doi.org/10.1088/1361-6463/aaaf08
[32]  Löper, P., Moon, S., Martín de Nicolas, S., Niesen, B., Ledinsky, M., Nicolay, S., et al. (2015) Organic-Inorganic Halide Perovskite/Crystalline Silicon Four-Terminal Tandem Solar Cells. Physical Chemistry Chemical Physics, 17, 1619-1629.
https://doi.org/10.1039/c4cp03788j
[33]  Chen, B., Bai, Y., Yu, Z., Li, T., Zheng, X., Dong, Q., et al. (2016) Efficient Semitransparent Perovskite Solar Cells for 23.0%‐Efficiency Perovskite/Silicon Four‐Terminal Tandem Cells. Advanced Energy Materials, 6, Article 1601128.
https://doi.org/10.1002/aenm.201601128
[34]  Duong, T., Wu, Y., Shen, H., Peng, J., Fu, X., Jacobs, D., et al. (2017) Rubidium Multication Perovskite with Optimized Bandgap for Perovskite‐Silicon Tandem with Over 26% Efficiency. Advanced Energy Materials, 7, Article 1700228.
https://doi.org/10.1002/aenm.201700228
[35]  Chen, B., Baek, S., Hou, Y., Aydin, E., De Bastiani, M., Scheffel, B., et al. (2020) Enhanced Optical Path and Electron Diffusion Length Enable High-Efficiency Perovskite Tandems. Nature Communications, 11, Article No. 1257.
https://doi.org/10.1038/s41467-020-15077-3
[36]  Allen, T.G., Bullock, J., Yang, X., Javey, A. and De Wolf, S. (2019) Passivating Contacts for Crystalline Silicon Solar Cells. Nature Energy, 4, 914-928.
https://doi.org/10.1038/s41560-019-0463-6
[37]  Liang, T.S., Pravettoni, M., Deline, C., Stein, J.S., Kopecek, R., Singh, J.P., et al. (2019) A Review of Crystalline Silicon Bifacial Photovoltaic Performance Characterisation and Simulation. Energy & Environmental Science, 12, 116-148.
https://doi.org/10.1039/c8ee02184h
[38]  De Bastiani, M., Mirabelli, A.J., Hou, Y., Gota, F., Aydin, E., Allen, T.G., et al. (2021) Efficient Bifacial Monolithic Perovskite/Silicon Tandem Solar Cells via Bandgap Engineering. Nature Energy, 6, 167-175.
https://doi.org/10.1038/s41560-020-00756-8
[39]  Fischer, M., Woodhouse, M., Herritsch, S., Trube, J., et al. (2021) International Technology Roadmap for Photovoltaic (ITRPV).
https://itrpv.vdma.org/en/ueber-uns
[40]  Onno, A., Rodkey, N., Asgharzadeh, A., Manzoor, S., Yu, Z.J., Toor, F., et al. (2020) Predicted Power Output of Silicon-Based Bifacial Tandem Photovoltaic Systems. Joule, 4, 580-596.
https://doi.org/10.1016/j.joule.2019.12.017
[41]  Dupre, O., Tuomiranta, A., Jeangros, Q., Boccard, M., Alet, P. and Ballif, C. (2020) Design Rules to Fully Benefit from Bifaciality in Two-Terminal Perovskite/Silicon Tandem Solar Cells. IEEE Journal of Photovoltaics, 10, 714-721.
https://doi.org/10.1109/jphotov.2020.2973453
[42]  Coletti, G., Luxembourg, S.L., Geerligs, L.J., Rosca, V., Burgers, A.R., Wu, Y., et al. (2020) Bifacial Four-Terminal Perovskite/Silicon Tandem Solar Cells and Modules. ACS Energy Letters, 5, 1676-1680.
https://doi.org/10.1021/acsenergylett.0c00682
[43]  De Bastiani, M., Subbiah, A.S., Babics, M., Ugur, E., Xu, L., Liu, J., et al. (2022) Bifacial Perovskite/Silicon Tandem Solar Cells. Joule, 6, 1431-1445.
https://doi.org/10.1016/j.joule.2022.05.014
[44]  Jacobs, D.A., Langenhorst, M., Sahli, F., Richards, B.S., White, T.P., Ballif, C., et al. (2019) Light Management: A Key Concept in High-Efficiency Perovskite/Silicon Tandem Photovoltaics. The Journal of Physical Chemistry Letters, 10, 3159-3170.
https://doi.org/10.1021/acs.jpclett.8b03721
[45]  Lehr, J., Langenhorst, M., Schmager, R., Kirner, S., Lemmer, U., Richards, B.S., et al. (2018) Energy Yield Modelling of Perovskite/Silicon Two-Terminal Tandem PV Modules with Flat and Textured Interfaces. Sustainable Energy & Fuels, 2, 2754-2761.
https://doi.org/10.1039/c8se00465j
[46]  Gharibzadeh, S., Abdollahi Nejand, B., Jakoby, M., Abzieher, T., Hauschild, D., Moghadamzadeh, S., et al. (2019) Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure. Advanced Energy Materials, 9, Article 1803699.
https://doi.org/10.1002/aenm.201803699
[47]  Bush, K.A., Bailie, C.D., Chen, Y., Bowring, A.R., Wang, W., Ma, W., et al. (2016) Thermal and Environmental Stability of Semi-Transparent Perovskite Solar Cells for Tandems by a Solution-Processed Nanoparticle Buffer Layer and Sputtered ITO Electrode. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, 5-10 June 2016, 246-248.
https://doi.org/10.1109/pvsc.2016.7749588
[48]  Morales-Masis, M., Martin De Nicolas, S., Holovsky, J., De Wolf, S. and Ballif, C. (2015) Low-Temperature High-Mobility Amorphous IZO for Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 5, 1340-1347.
https://doi.org/10.1109/jphotov.2015.2450993
[49]  Werner, J., Walter, A., Rucavado, E., Moon, S., Sacchetto, D., Rienaecker, M., et al. (2016) Zinc Tin Oxide as High-Temperature Stable Recombination Layer for Mesoscopic Perovskite/Silicon Monolithic Tandem Solar Cells. Applied Physics Letters, 109, Article 233902.
https://doi.org/10.1063/1.4971361
[50]  Sahli, F., Kamino, B.A., Werner, J., Bräuninger, M., Paviet‐Salomon, B., Barraud, L., et al. (2017) Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction. Advanced Energy Materials, 8, Article 1701609.
https://doi.org/10.1002/aenm.201701609
[51]  Aydin, E., Liu, J., Ugur, E., Azmi, R., Harrison, G.T., Hou, Y., et al. (2021) Ligand-bridged Charge Extraction and Enhanced Quantum Efficiency Enable Efficient n-i-p Perovskite/silicon Tandem Solar Cells. Energy & Environmental Science, 14, 4377-4390.
https://doi.org/10.1039/d1ee01206a
[52]  Bush, K.A., Palmstrom, A.F., Yu, Z.J., Boccard, M., Cheacharoen, R., Mailoa, J.P., et al. (2017) 23.6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells with Improved Stability. Nature Energy, 2, Article No. 50.
https://doi.org/10.1038/nenergy.2017.9
[53]  Chin, X.Y., Turkay, D., Steele, J.A., Tabean, S., Eswara, S., Mensi, M., et al. (2023) Interface Passivation for 31.25%-Efficient Perovskite/Silicon Tandem Solar Cells. Science, 381, 59-63.
https://doi.org/10.1126/science.adg0091
[54]  Santbergen, R., Mishima, R., Meguro, T., Hino, M., Uzu, H., Blanker, J., et al. (2016) Minimizing Optical Losses in Monolithic Perovskite/c-Si Tandem Solar Cells with a Flat Top Cell. Optics Express, 24, A1288-A1299.
https://doi.org/10.1364/oe.24.0a1288
[55]  Mazzarella, L., Lin, Y., Kirner, S., Morales‐Vilches, A.B., Korte, L., Albrecht, S., et al. (2019) Infrared Light Management Using a Nanocrystalline Silicon Oxide Interlayer in Monolithic Perovskite/Silicon Heterojunction Tandem Solar Cells with Efficiency above 25%. Advanced Energy Materials, 9, Article 1803241.
https://doi.org/10.1002/aenm.201803241
[56]  Jošt, M., Köhnen, E., Morales-Vilches, A.B., Lipovšek, B., Jäger, K., Macco, B., et al. (2018) Textured Interfaces in Monolithic Perovskite/Silicon Tandem Solar Cells: Advanced Light Management for Improved Efficiency and Energy Yield. Energy & Environmental Science, 11, 3511-3523.
https://doi.org/10.1039/c8ee02469c
[57]  Shanmugam, N., Pugazhendhi, R., Madurai Elavarasan, R., Kasiviswanathan, P. and Das, N. (2020) Anti-Reflective Coating Materials: A Holistic Review from PV Perspective. Energies, 13, Article 2631.
https://doi.org/10.3390/en13102631
[58]  Hou, Y., Aydin, E., De Bastiani, M., Xiao, C., Isikgor, F.H., Xue, D., et al. (2020) Efficient Tandem Solar Cells with Solution-Processed Perovskite on Textured Crystalline Silicon. Science, 367, 1135-1140.
https://doi.org/10.1126/science.aaz3691
[59]  Lipovsek, B., Krc, J. and Topic, M. (2018) Microtextured Light-Management Foils and Their Optimization for Planar Organic and Perovskite Solar Cells. IEEE Journal of Photovoltaics, 8, 783-792.
https://doi.org/10.1109/jphotov.2018.2810844
[60]  Bush, K.A., Manzoor, S., Frohna, K., Yu, Z.J., Raiford, J.A., Palmstrom, A.F., et al. (2018) Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Terminal Perovskite-Silicon Tandem Solar Cells. ACS Energy Letters, 3, 2173-2180.
https://doi.org/10.1021/acsenergylett.8b01201
[61]  Albrecht, S., Saliba, M., Correa Baena, J.P., Lang, F., Kegelmann, L., Mews, M., et al. (2016) Monolithic Perovskite/Silicon-Heterojunction Tandem Solar Cells Processed at Low Temperature. Energy & Environmental Science, 9, 81-88.
https://doi.org/10.1039/c5ee02965a
[62]  Bett, A.J., Schulze, P.S.C., Winkler, K.M., Kabakli, Ö.S., Ketterer, I., Mundt, L.E., et al. (2019) Two‐Terminal Perovskite Silicon Tandem Solar Cells with a High‐Bandgap Perovskite Absorber Enabling Voltages Over 1.8 V. Progress in Photovoltaics: Research and Applications, 28, 99-110.
https://doi.org/10.1002/pip.3208
[63]  Sahli, F., Werner, J., Kamino, B.A., Bräuninger, M., Monnard, R., Paviet-Salomon, B., et al. (2018) Fully Textured Monolithic Perovskite/Silicon Tandem Solar Cells with 25.2% Power Conversion Efficiency. Nature Materials, 17, 820-826.
https://doi.org/10.1038/s41563-018-0115-4
[64]  Kanda, H., Shibayama, N., Uzum, A., Umeyama, T., Imahori, H., Ibi, K., et al. (2018) Effect of Silicon Surface for Perovskite/Silicon Tandem Solar Cells: Flat or Textured? ACS Applied Materials & Interfaces, 10, 35016-35024.
https://doi.org/10.1021/acsami.8b08701
[65]  Jošt, M., Kegelmann, L., Korte, L. and Albrecht, S. (2020) Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods toward 30% Efficiency. Advanced Energy Materials, 10, Article 1904102.
https://doi.org/10.1002/aenm.201904102
[66]  Köhnen, E., Jošt, M., Morales-Vilches, A.B., Tockhorn, P., Al-Ashouri, A., Macco, B., et al. (2019) Highly Efficient Monolithic Perovskite Silicon Tandem Solar Cells: Analyzing the Influence of Current Mismatch on Device Performance. Sustainable Energy & Fuels, 3, 1995-2005.
https://doi.org/10.1039/c9se00120d
[67]  Köhnen, E., Wagner, P., Lang, F., Cruz, A., Li, B., Roß, M., et al. (2021) 27.9% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells on Industry Compatible Bottom Cells. Solar RRL, 5, Article 2100244.
https://doi.org/10.1002/solr.202100244
[68]  Mercaldo, L.V., Bobeico, E., De Maria, A., Della Noce, M., Ferrara, M., La Ferrara, V., et al. (2021) Monolithic Perovskite/Silicon-Heterojunction Tandem Solar Cells with Nanocrystalline Si/SiOx Tunnel Junction. Energies, 14, Article 7684.
https://doi.org/10.3390/en14227684
[69]  Padi, S.P., Khokhar, M.Q., Chowdhury, S., Cho, E. and Yi, J. (2021) Nanoscale SiOx Tunnel Oxide Deposition Techniques and Their Influence on Cell Parameters of Topcon Solar Cells. Transactions on Electrical and Electronic Materials, 22, 557-566.
https://doi.org/10.1007/s42341-021-00356-7
[70]  Bao, Y., Ma, T., Ai, Z., Zhang, Y., Shi, L., Qin, L., et al. (2024) Insights into Efficiency Deviation from Current-Mismatch for Tandem Photovoltaics. Nano Energy, 120, Article 109165.
https://doi.org/10.1016/j.nanoen.2023.109165
[71]  Gao, Y., Lin, R., Xiao, K., Luo, X., Wen, J., Yue, X., et al. (2022) Performance Optimization of Monolithic All-Perovskite Tandem Solar Cells under Standard and Real-World Solar Spectra. Joule, 6, 1944-1963.
https://doi.org/10.1016/j.joule.2022.06.027
[72]  Bett, A.J., Chojniak, D., Schachtner, M., Reichmuth, S.K., Kabaklı, Ö.Ş., Schulze, P.S.C., et al. (2022) Spectrometric Characterization of Monolithic Perovskite/Silicon Tandem Solar Cells. Solar RRL, 7, Article 2200948.
https://doi.org/10.1002/solr.202200948
[73]  Boccard, M. and Ballif, C. (2020) Influence of the Subcell Properties on the Fill Factor of Two-Terminal Perovskite-Silicon Tandem Solar Cells. ACS Energy Letters, 5, 1077-1082.
https://doi.org/10.1021/acsenergylett.0c00156

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133