|
火电厂循环冷却水电化学处理技术研究进展
|
Abstract:
本文综述了电化学方法在循环水除垢领域的研究进展,并详细阐述了其应用原理和处理优势。本文介绍了电化学除垢技术的基本原理,并深入分析了电极材料、供电方式、电流密度、停留时间等因素对处理效率的影响。本文展示了电化学技术在工业生产中的具体应用案例。最后,文章总结了电化学除垢技术的现状,并对其未来的发展趋势和潜在市场前景进行了展望。此综述不仅为相关领域的研究者提供了宝贵的参考信息,也为工业应用提供了科学指导和实践基础。
The research progress of the electrochemical method in the field of circulating water descaling is reviewed, and its application principle and treatment advantages are described in detail. This paper introduces the basic principle of electrochemical descaling technology, and analyzes the influence of electrode material, power supply mode, current density, residence time and other factors on the treatment efficiency. This paper shows the specific application cases of electrochemical technology in industrial production. Finally, the article summarizes the current situation of electrochemical descaling technology, and looks forward to its future development trend and potential market prospects. This review not only provides valuable reference information for researchers in related fields, but also provides scientific guidance and practical basis for industrial applications.
[1] | 何池飞, 肖宁, 李静, 等. 循环冷却水电化学处理技术研究进展[J]. 工业水处理, 2022, 42(12): 26-33. |
[2] | Liu, Y., Hu, C. and Lo, S. (2019) Direct and Indirect Electrochemical Oxidation of Amine-Containing Pharmaceuticals Using Graphite Electrodes. Journal of Hazardous Materials, 366, 592-605. https://doi.org/10.1016/j.jhazmat.2018.12.037 |
[3] | 苏艳, 杨阳, 古克亚, 等. 循环冷却水系统的电化学除垢技术研究进展[J]. 工业水处理, 2023, 43(8): 30-37. |
[4] | Martínez-Huitle, C.A. and Panizza, M. (2018) Electrochemical Oxidation of Organic Pollutants for Wastewater Treatment. Current Opinion in Electrochemistry, 11, 62-71. https://doi.org/10.1016/j.coelec.2018.07.010 |
[5] | Garcia-Segura, S., Ocon, J.D. and Chong, M.N. (2018) Electrochemical Oxidation Remediation of Real Wastewater Effluents—A Review. Process Safety and Environmental Protection, 113, 48-67. https://doi.org/10.1016/j.psep.2017.09.014 |
[6] | 张爱军, 晋银佳, 喻江, 等. 电化学技术处理火电厂循环水的试验研究[J]. 华电技术, 2019, 41(8): 53-56. |
[7] | Le, T.X.H., Haflich, H., Shah, A.D. and Chaplin, B.P. (2019) Energy-Efficient Electrochemical Oxidation of Perfluoroalkyl Substances Using a Ti4O7 Reactive Electrochemical Membrane Anode. Environmental Science & Technology Letters, 6, 504-510. https://doi.org/10.1021/acs.estlett.9b00397 |
[8] | 贠念增, 张利, 陈磊, 等. 电厂尖峰循环冷却水电化学处理工程实践[J]. 工业水处理, 2018, 38(11): 103-105+108. |
[9] | Botz, A., Clausmeyer, J., Öhl, D., Tarnev, T., Franzen, D., Turek, T., et al. (2018) Local Activities of Hydroxide and Water Determine the Operation of Silver-Based Oxygen Depolarized Cathodes. Angewandte Chemie International Edition, 57, 12285-12289. https://doi.org/10.1002/anie.201807798 |
[10] | 钱傲. 电化学水处理体系在特定条件下对污染物的转化新机理[D]: [博士学位论文]. 北京: 中国地质大学, 2019. |
[11] | Gabrielli, C., Maurin, G., Perrot, H., Poindessous, G. and Rosset, R. (2002) Investigation of Electrochemical Calcareous Scaling. Journal of Electroanalytical Chemistry, 538, 133-143. https://doi.org/10.1016/s0022-0728(02)01044-6 |
[12] | Zeppenfeld, K. (2011) Electrochemical Removal of Calcium and Magnesium Ions from Aqueous Solutions. Desalination, 277, 99-105. https://doi.org/10.1016/j.desal.2011.04.005 |
[13] | 刘振. 浅析电化学除垢技术在循环水系统中的应用[J]. 河南化工, 2019, 36(8): 41-43. |
[14] | 易清风. 氧气在阴极的电还原及其应用研究进展[J]. 化学研究与应用, 2003, 15(5): 595-600. |
[15] | 高海玲. 氧阴极催化剂的制备及其电化学性能研究[D]: [硕士学位论文]. 天津: 天津大学, 2014. |
[16] | 胡波兵. 固体氧化物阴极表面氧还原反应过程研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2017. |
[17] | 胡伟康, 张允什, 宋德瑛, 等. 碱性电解水制氢的活性阴极材料[J]. 高技术通讯, 1995, 5(8): 55-60. |
[18] | 付银辉, 黎学明, 杨文静, 等. Ni-Mo-P活性阴极制备及析氢行为的研究[J]. 材料导报, 2009, 23(22): 56-58. |
[19] | 刘恒君, 陆崖青. 新型析氢活性阴极的研究[J]. 中国氯碱, 2018(4): 1-3. |
[20] | 曹寅亮, 李志林, 王峰, 等. 镍锡析氢活性阴极的电化学制备及其在碱性溶液中的电催化机理[J]. 物理化学学报, 2013, 29(7): 1479-1486. |
[21] | Zhang, L., Xue, G., Liu, S., Zhang, N., Duan, A., Wang, L., et al. (2011) Treatment of Coking Wastewater by Coupling Electrochemical Oxidation and Flocculation Technology. 2011 International Conference on Materials for Renewable Energy & Environment, Shanghai, 20-22 May 2011, 1133-1136. https://doi.org/10.1109/icmree.2011.5930539 |
[22] | 赵丹丹, 曹顺安, 陈东, 等. 电解技术在循环冷却水处理中的应用研究进展[J]. 热力发电, 2018, 47(6): 1-7. |
[23] | 高磊, 疏吟梅, 朱伟光, 等. 电化学技术在某电厂循环水上的应用研究[J]. 电气技术与经济, 2024(3): 84-86+89. |
[24] | 徐浩, 雷佳妮, 杨鸿辉, 等. 电化学水垢去除技术处理能力核算及技术改进[J]. 工业水处理, 2019, 39(2): 17-20+74. |
[25] | 肖丙雁, 丁宗琪, 王万俊, 等. 电化学技术在稳定冷却循环水水质中的应用[J]. 环境科学与管理, 2010, 35(2): 53-56. |
[26] | He, Y., Lin, H., Guo, Z., Zhang, W., Li, H. and Huang, W. (2019) Recent Developments and Advances in Boron-Doped Diamond Electrodes for Electrochemical Oxidation of Organic Pollutants. Separation and Purification Technology, 212, 802-821. https://doi.org/10.1016/j.seppur.2018.11.056 |
[27] | 荣光辉, 毛振兴, 刘保录, 等. 循环水电化学除垢研究进展[J]. 化工机械, 2023, 50(4): 448-455. |
[28] | 徐浩, 郭艺菲, 郭思远, 等. 循环冷却水系统使用电化学除垢设备的选择方法[C]//中国环境科学学会环境工程分会. 中国环境科学学会2019年科学技术年会——环境工程技术创新与应用分论坛. 西安: 中国环境科学学会, 2019: 5. |
[29] | 何卉, 张廷海, 汪莉. 化学水处理自动控制系统的设计与实现[J]. 盐业与化工, 2014, 43(2): 13-17. |
[30] | 叶建军, 邱鹏. 自动化装置在循环水处理方案中的应用[J]. 工业水处理, 2001, 21(9): 33-34. |
[31] | 李鹏飞. 电化学循环水处理技术项目探究[J]. 化工管理, 2019(10): 70. |
[32] | 李火银, 员佳琦, 李攀, 等. 电化学水处理技术降低循环水硬度的实验研究[J]. 水处理技术, 2024, 50(3): 37-41+47. |
[33] | Turro, E., Giannis, A., Cossu, R., Gidarakos, E., Mantzavinos, D. and Katsaounis, A. (2011) Electrochemical Oxidation of Stabilized Landfill Leachate on DSA Electrodes. Journal of Hazardous Materials, 190, 460-465. https://doi.org/10.1016/j.jhazmat.2011.03.085 |
[34] | 郭丽娜. 电化学除垢技术在焦化废水处理循环冷却水中的应用分析[J]. 山西化工, 2023, 43(11): 126-128. |
[35] | 李森, 王海峰. 电化学法处理冷却循环水技术的应用[J]. 化工进展, 2013, 32(10): 2514-2517. |
[36] | 王雨萌. 静电场作用下水流速度变化对电厂循环水阻垢效果影响研究[D]: [硕士学位论文]. 呼和浩特: 内蒙古工业大学, 2018. |
[37] | 刘智安, 王雨萌, 夏添, 等. 循环水流速对换热器壁面CaCO3水垢晶体的影响[J]. 内蒙古师范大学学报(自然科学汉文版), 2016, 45(5): 639-644. |
[38] | 鲁宁宁. 循环冷却水电化学除垢工艺优化及应用研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2022. |
[39] | 李文运, 赵振环, 李思敏, 等. 水力停留时间对BAF除污性能的影响[J]. 中国给水排水, 2012, 28(3): 75-77. |
[40] | 陈璐, 杜鹏程, 刘强. 水力停留时间对HMBR处理效能的影响[J]. 江苏建筑职业技术学院学报, 2018, 18(4): 37-40. |
[41] | 刘睿, 高艳梅, 王晓慧, 等. 水力停留时间对MFC-A~2/O工艺处理生活污水的影响[J]. 环境科学学报, 2017, 37(2): 680-685. |
[42] | Li, X. (2022) Development in Electrochemical Technology for Environmental Wastewater Treatment. International Journal of Electrochemical Science, 17, Article 2212110. https://doi.org/10.20964/2022.12.104 |
[43] | Sari, A., Sutarlan, E., Nursanto, E., et al. (2021) Cost Optimization of Tannery Wastewater Treatment by Electrocoagulation Process with Iron Electrode under Various DC Voltage and Electricity Consumption. In: Proceedings of the IOP Conference Series: Earth and Environmental Science, F, IOP Publishing. |
[44] | 张延进, 张泽坤, 徐星, 等. 循环冷却水系统的电化学水质稳定技术案例分析[J]. 工业水处理, 2024, 44(2): 184-189. |
[45] | Li, S. and Wang, H.F. (2013) Application of Electrochemical Technology in the Treatment of Circulating Cooling Water. Chemical Industry and Engineering Progree, 32, 2514-2517. |
[46] | Xu, H., Xu, Z., Guo, Y., Guo, S., Xu, X., Gao, X., et al. (2020) Research and Application Progress of Electrochemical Water Quality Stabilization Technology for Recirculating Cooling Water in China: A Short Review. Journal of Water Process Engineering, 37, Article 101433. https://doi.org/10.1016/j.jwpe.2020.101433 |