|
新冠病毒感染后肺纤维化诊治研究进展
|
Abstract:
新冠病毒(COVID-19)感染对人类健康造成了极大的危害。虽然大流行已经得到控制,但COVID-19感染带来的长新冠综合征依然影响着出院后患者的健康和生活质量,涉及呼吸、心血管、神经等多个系统。COVID-19感染后肺纤维化(PCPF)是呼吸系统方面的常见问题,具有很高的发生率。但是目前,临床对PCPF的诊断、治疗、疾病转归等方面的研究尚较少。本文就相关文献资料进行综述,期望对PCPF的临床诊治提供参考借鉴。
COVID-19 infection has caused great harm to human health. Although the pandemic has been brought under control, the long COVID syndrome caused by COVID-19 infection still affects the health and quality of life of patients after discharge, involving multiple systems such as respiratory, cardiovascular, and neurological. Post-COVID-19 pulmonary fibrosis (PCPF) is a common respiratory problem with a high incidence. However, at present, there are few clinical studies on the diagnosis, treatment, and disease outcome of PCPF. This article reviews the relevant literature and expects to provide reference for the clinical diagnosis and treatment of PCPF.
[1] | Al-Aly, Z., Xie, Y. and Bowe, B. (2021) High-Dimensional Characterization of Post-Acute Sequelae of Covid-19. Nature, 594, 259-264. https://doi.org/10.1038/s41586-021-03553-9 |
[2] | Fabbri, L., Moss, S., Khan, F., et al. (2021) Post-Viral Parenchymal Lung Disease Following COVID-19 and Viral Pneumonitis Hospitalisation: A Systematic Review and Meta-Analysis. |
[3] | Huang, W.J. and Tang, X.X. (2021) Virus Infection Induced Pulmonary Fibrosis. Journal of Translational Medicine, 19, Article No. 496. https://doi.org/10.1186/s12967-021-03159-9 |
[4] | Mabrey, F.L., Morrell, E.D. and Wurfel, M.M. (2021) TLRs in COVID-19: How They Drive Immunopathology and the Rationale for Modulation. Innate Immunity, 27, 503-513. https://doi.org/10.1177/17534259211051364 |
[5] | Park, G.J., Osinski, A., Hernandez, G., Eitson, J.L., Majumdar, A., Tonelli, M., et al. (2022) The Mechanism of RNA Capping by Sars-Cov-2. Nature, 609, 793-800. https://doi.org/10.1038/s41586-022-05185-z |
[6] | Duan, T., Xing, C., Chu, J., Deng, X., Du, Y., Liu, X., et al. (2024) ACE2-Dependent and-Independent Sars-Cov-2 Entries Dictate Viral Replication and Inflammatory Response during Infection. Nature Cell Biology, 26, 628-644. https://doi.org/10.1038/s41556-024-01388-w |
[7] | Leng, L., Cao, R., Ma, J., Mou, D., Zhu, Y., Li, W., et al. (2020) Pathological Features of Covid-19-Associated Lung Injury: A Preliminary Proteomics Report Based on Clinical Samples. Signal Transduction and Targeted Therapy, 5, Article No. 240. https://doi.org/10.1038/s41392-020-00355-9 |
[8] | Crisan-Dabija, R., Pavel, C.A., Popa, I.V., Tarus, A. and Burlacu, A. (2020) “A Chain Only as Strong as Its Weakest Link”: An Up-to-Date Literature Review on the Bidirectional Interaction of Pulmonary Fibrosis and Covid-19. Journal of Proteome Research, 19, 4327-4338. https://doi.org/10.1021/acs.jproteome.0c00387 |
[9] | Yim, W.W. and Mizushima, N. (2021) Autophagosome Maturation Stymied by Sars-Cov-2. Developmental Cell, 56, 400-402. https://doi.org/10.1016/j.devcel.2021.02.002 |
[10] | Hill, C., Li, J., Liu, D., Conforti, F., Brereton, C.J., Yao, L., et al. (2019) Autophagy Inhibition-Mediated Epithelial-Mesenchymal Transition Augments Local Myofibroblast Differentiation in Pulmonary Fibrosis. Cell Death & Disease, 10, Article No. 591. https://doi.org/10.1038/s41419-019-1820-x |
[11] | Picchi, G., Mari, A., Ricciardi, A., Carucci, A.C., Sinatti, G., Cosimini, B., et al. (2020) Three Cases of COVID-19 Pneumonia in Female Patients in Italy Who Had Pulmonary Fibrosis on Follow-Up Lung Computed Tomography Imaging. American Journal of Case Reports, 21, e926921. https://doi.org/10.12659/ajcr.926921 |
[12] | Yu, M., Liu, Y., Xu, D., Zhang, R., Lan, L. and Xu, H. (2020) Prediction of the Development of Pulmonary Fibrosis Using Serial Thin-Section CT and Clinical Features in Patients Discharged after Treatment for COVID-19 Pneumonia. Korean Journal of Radiology, 21, 746-755. https://doi.org/10.3348/kjr.2020.0215 |
[13] | Daher, A., Balfanz, P., Cornelissen, C., Müller, A., Bergs, I., Marx, N., et al. (2020) Follow Up of Patients with Severe Coronavirus Disease 2019 (COVID-19): Pulmonary and Extrapulmonary Disease Sequelae. Respiratory Medicine, 174, Article ID: 106197. https://doi.org/10.1016/j.rmed.2020.106197 |
[14] | Tanni, S.E., Fabro, A.T., de Albuquerque, A., Ferreira, E.V.M., Verrastro, C.G.Y., Sawamura, M.V.Y., et al. (2021) Pulmonary Fibrosis Secondary to COVID-19: A Narrative Review. Expert Review of Respiratory Medicine, 15, 791-803. https://doi.org/10.1080/17476348.2021.1916472 |
[15] | Besutti, G., Monelli, F., Schirò, S., Milone, F., Ottone, M., Spaggiari, L., et al. (2022) Follow-Up CT Patterns of Residual Lung Abnormalities in Severe COVID-19 Pneumonia Survivors: A Multicenter Retrospective Study. Tomography, 8, 1184-1195. https://doi.org/10.3390/tomography8030097 |
[16] | Han, X., Fan, Y., Alwalid, O., Li, N., Jia, X., Yuan, M., et al. (2021) Six-Month Follow-Up Chest CT Findings after Severe COVID-19 Pneumonia. Radiology, 299, E177-E186. https://doi.org/10.1148/radiol.2021203153 |
[17] | Crook, H., Raza, S., Nowell, J., Young, M. and Edison, P. (2021) Long Covid—Mechanisms, Risk Factors, and Management. BMJ, 374, n1648. https://doi.org/10.1136/bmj.n1648 |
[18] | Huang, C., Huang, L., Wang, Y., Li, X., Ren, L., Gu, X., et al. (2023) 6-Month Consequences of COVID-19 in Patients Discharged from Hospital: A Cohort Study. The Lancet, 401, e21-e33. https://doi.org/10.1016/s0140-6736(23)00810-3 |
[19] | Yan, X., Huang, H., Wang, C., Jin, Z., Zhang, Z., He, J., et al. (2021) Follow-Up Study of Pulmonary Function among COVID-19 Survivors 1 Year after Recovery. Journal of Infection, 83, 381-412. https://doi.org/10.1016/j.jinf.2021.05.034 |
[20] | Fabbri, L., Moss, S., Khan, F.A., Chi, W., Xia, J., Robinson, K., et al. (2022) Parenchymal Lung Abnormalities Following Hospitalisation for COVID-19 and Viral Pneumonitis: A Systematic Review and Meta-Analysis. Thorax, 78, 191-201. https://doi.org/10.1136/thoraxjnl-2021-218275 |
[21] | Lee, J.H., Yim, J. and Park, J. (2022) Pulmonary Function and Chest Computed Tomography Abnormalities 6-12 Months after Recovery from COVID-19: A Systematic Review and Meta-Analysis. Respiratory Research, 23, Article No. 233. https://doi.org/10.1186/s12931-022-02163-x |
[22] | Ojha, V., Mani, A., Pandey, N.N., Sharma, S. and Kumar, S. (2020) CT in Coronavirus Disease 2019 (COVID-19): A Systematic Review of Chest CT Findings in 4410 Adult Patients. European Radiology, 30, 6129-6138. https://doi.org/10.1007/s00330-020-06975-7 |
[23] | Ding, M., Zhang, Q., Li, Q., Wu, T. and Huang, Y. (2020) Correlation Analysis of the Severity and Clinical Prognosis of 32 Cases of Patients with Covid-19. Respiratory Medicine, 167, Article ID: 105981. https://doi.org/10.1016/j.rmed.2020.105981 |
[24] | Huang, W., Wu, Q., Chen, Z., Xiong, Z., Wang, K., Tian, J., et al. (2021) The Potential Indicators for Pulmonary Fibrosis in Survivors of Severe Covid-19. Journal of Infection, 82, e5-e7. https://doi.org/10.1016/j.jinf.2020.09.027 |
[25] | Ojo, A.S., Balogun, S.A., Williams, O.T. and Ojo, O.S. (2020) Pulmonary Fibrosis in COVID-19 Survivors: Predictive Factors and Risk Reduction Strategies. Pulmonary Medicine, 2020, Article ID: 6175964. https://doi.org/10.1155/2020/6175964 |
[26] | Marvisi, M., Ferrozzi, F., Balzarini, L., Mancini, C., Ramponi, S. and Uccelli, M. (2020) First Report on Clinical and Radiological Features of COVID-19 Pneumonitis in a Caucasian Population: Factors Predicting Fibrotic Evolution. International Journal of Infectious Diseases, 99, 485-488. https://doi.org/10.1016/j.ijid.2020.08.054 |
[27] | Vasarmidi, E., Tsitoura, E., Spandidos, D., Tzanakis, N. and Antoniou, K. (2020) Pulmonary Fibrosis in the Aftermath of the Covid-19 Era (Review). Experimental and Therapeutic Medicine, 20, 2557-2560. https://doi.org/10.3892/etm.2020.8980 |
[28] | González, J., Benítez, I.D., Carmona, P., Santisteve, S., Monge, A., Moncusí-Moix, A., et al. (2021) Pulmonary Function and Radiologic Features in Survivors of Critical Covid-19: A 3-Month Prospective Cohort. Chest, 160, 187-198. https://doi.org/10.1016/j.chest.2021.02.062 |
[29] | Rajan, S.K., Cottin, V., Dhar, R., Danoff, S., Flaherty, K.R., Brown, K.K., et al. (2022) Progressive Pulmonary Fibrosis: An Expert Group Consensus Statement. European Respiratory Journal, 61, Article ID: 2103187. https://doi.org/10.1183/13993003.03187-2021 |
[30] | Camiciottoli, G., Orlandi, I., Bartolucci, M., Meoni, E., Nacci, F., Diciotti, S., et al. (2007) Lung CT Densitometry in Systemic Sclerosis: Correlation with Lung Function, Exercise Testing, and Quality of Life. Chest, 131, 672-681. https://doi.org/10.1378/chest.06-1401 |
[31] | Zou, J., Sun, L., Wang, B., Zou, Y., Xu, S., Ding, Y., et al. (2021) The Characteristics and Evolution of Pulmonary Fibrosis in COVID-19 Patients as Assessed by AI-Assisted Chest HRCT. PLOS ONE, 16, e0248957. https://doi.org/10.1371/journal.pone.0248957 |
[32] | Wang, Z., Yang, X., Zhou, Y., Sun, J., Liu, X., Zhang, J., et al. (2020) COVID-19 Severity Correlates with Weaker T-Cell Immunity, Hypercytokinemia, and Lung Epithelium Injury. American Journal of Respiratory and Critical Care Medicine, 202, 606-610. https://doi.org/10.1164/rccm.202005-1701le |
[33] | Khalil, N., Manganas, H., Ryerson, C.J., Shapera, S., Cantin, A.M., Hernandez, P., et al. (2018) Phase 2 Clinical Trial of PBI-4050 in Patients with Idiopathic Pulmonary Fibrosis. European Respiratory Journal, 53, Article ID: 1800663. https://doi.org/10.1183/13993003.00663-2018 |
[34] | George, P.M., Wells, A.U. and Jenkins, R.G. (2020) Pulmonary Fibrosis and COVID-19: The Potential Role for Antifibrotic Therapy. The Lancet Respiratory Medicine, 8, 807-815. https://doi.org/10.1016/s2213-2600(20)30225-3 |
[35] | Seifirad, S. (2020) Pirfenidone: A Novel Hypothetical Treatment for Covid-19. Medical Hypotheses, 144, Article ID: 110005. https://doi.org/10.1016/j.mehy.2020.110005 |
[36] | Vitiello, A., Pelliccia, C. and Ferrara, F. (2020) COVID-19 Patients with Pulmonary Fibrotic Tissue: Clinical Pharmacological Rational of Antifibrotic Therapy. SN Comprehensive Clinical Medicine, 2, 1709-1712. https://doi.org/10.1007/s42399-020-00487-7 |
[37] | Flaherty, K.R., Wells, A.U., Cottin, V., Devaraj, A., Walsh, S.L.F., Inoue, Y., et al. (2019) Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. New England Journal of Medicine, 381, 1718-1727. https://doi.org/10.1056/nejmoa1908681 |
[38] | King, T.E., Bradford, W.Z., Castro-Bernardini, S., Fagan, E.A., Glaspole, I., Glassberg, M.K., et al. (2014) A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 370, 2083-2092. https://doi.org/10.1056/nejmoa1402582 |
[39] | Richeldi, L., du Bois, R.M., Raghu, G., Azuma, A., Brown, K.K., Costabel, U., et al. (2014) Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 370, 2071-2082. https://doi.org/10.1056/nejmoa1402584 |
[40] | Zhao, Y., Yang, C., An, X., Xiong, Y., Shang, Y., He, J., et al. (2021) Follow-Up Study on COVID-19 Survivors One Year after Discharge from Hospital. International Journal of Infectious Diseases, 112, 173-182. https://doi.org/10.1016/j.ijid.2021.09.017 |
[41] | Wu, X., Liu, X., Zhou, Y., Yu, H., Li, R., Zhan, Q., et al. (2021) 3-Month, 6-Month, 9-Month, and 12-Month Respiratory Outcomes in Patients Following COVID-19-Related Hospitalisation: A Prospective Study. The Lancet Respiratory Medicine, 9, 747-754. https://doi.org/10.1016/s2213-2600(21)00174-0 |
[42] | Kerget, B., Çil, G., Araz, Ö., Alper, F. and Akgün, M. (2023) Comparison of Two Antifibrotic Treatments for Lung Fibrosis in Post-Covid-19 Syndrome: A Randomized, Prospective Study. Medicina Clínica (English Edition), 160, 525-530. https://doi.org/10.1016/j.medcle.2022.12.019 |
[43] | 深圳市第三人民医院, 国家感染性疾病临床医学研究中心, 深圳市感染性疾病质量控制中心, 等. 长新冠综合征临床诊治专家共识[J]. 新发传染病电子杂志, 2024, 9(1): 80-97. |
[44] | Egede, L.E. and Walker, R.J. (2020) Structural Racism, Social Risk Factors, and Covid-19—A Dangerous Convergence for Black Americans. New England Journal of Medicine, 383, e77. https://doi.org/10.1056/nejmp2023616 |
[45] | Myall, K.J., Mukherjee, B., Castanheira, A.M., Lam, J.L., Benedetti, G., Mak, S.M., et al. (2021) Persistent Post-Covid-19 Interstitial Lung Disease. An Observational Study of Corticosteroid Treatment. Annals of the American Thoracic Society, 18, 799-806. https://doi.org/10.1513/annalsats.202008-1002oc |
[46] | Dhooria, S., Chaudhary, S., Sehgal, I.S., Agarwal, R., Arora, S., Garg, M., et al. (2021) High-Dose versus Low-Dose Prednisolone in Symptomatic Patients with Post-Covid-19 Diffuse Parenchymal Lung Abnormalities: An Open-Label, Randomised Trial (The COLDSTER Trial). European Respiratory Journal, 59, Article ID: 2102930. https://doi.org/10.1183/13993003.02930-2021 |
[47] | Stern, A., Skalsky, K., Avni, T., Carrara, E., Leibovici, L. and Paul, M. (2017) Corticosteroids for Pneumonia. Cochrane Database of Systematic Reviews, 12, CD007720. https://doi.org/10.1002/14651858.cd007720.pub3 |
[48] | Salama, C., Han, J., Yau, L., Reiss, W.G., Kramer, B., Neidhart, J.D., et al. (2021) Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. New England Journal of Medicine, 384, 20-30. https://doi.org/10.1056/nejmoa2030340 |
[49] | Xu, X., Han, M., Li, T., Sun, W., Wang, D., Fu, B., et al. (2020) Effective Treatment of Severe COVID-19 Patients with Tocilizumab. Proceedings of the National Academy of Sciences, 117, 10970-10975. https://doi.org/10.1073/pnas.2005615117 |
[50] | Zannad, F., Alla, F., Dousset, B., Perez, A. and Pitt, B. (2000) Limitation of Excessive Extracellular Matrix Turnover May Contribute to Survival Benefit of Spironolactone Therapy in Patients with Congestive Heart Failure: Insights from the Randomized Aldactone Evaluation Study (RALES). Rales Investigators. Circulation, 102, 2700-2706. https://doi.org/10.1161/01.cir.102.22.2700 |
[51] | MacFadyen, R., et al. (1997) Aldosterone Blockade Reduces Vascular Collagen Turnover, Improves Heart Rate Variability and Reduces Early Morning Rise in Heart Rate in Heart Failure Patients. Cardiovascular Research, 35, 30-34. https://doi.org/10.1016/s0008-6363(97)00091-6 |
[52] | Hirasawa, G., Sasano, H., Takahashi, K., Fukushima, K., Suzuki, T., Hiwatashi, N., et al. (1997) Colocalization of 11β-Hydroxysteroid Dehydrogenase Type II and Mineralocorticoid Receptor in Human Epithelia. The Journal of Clinical Endocrinology & Metabolism, 82, 3859-3863. https://doi.org/10.1210/jcem.82.11.4337 |
[53] | Broillet, M., Berger, A. and Horisberger, J. (1993) Early Effects of Aldosterone on the Basolateral Potassium Conductance of A6 Cells. Pflügers Archiv European Journal of Physiology, 424, 91-93. https://doi.org/10.1007/bf00375106 |
[54] | Lieber, G.B., Fernandez, X., Mingo, G.G., Jia, Y., Caniga, M., Gil, M.A., et al. (2013) Mineralocorticoid Receptor Antagonists Attenuate Pulmonary Inflammation and Bleomycin-Evoked Fibrosis in Rodent Models. European Journal of Pharmacology, 718, 290-298. https://doi.org/10.1016/j.ejphar.2013.08.019 |
[55] | Golchin, A., Seyedjafari, E. and Ardeshirylajimi, A. (2020) Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell Reviews and Reports, 16, 427-433. https://doi.org/10.1007/s12015-020-09973-w |
[56] | Cadegiani, F.A., Wambier, C.G. and Goren, A. (2020) Spironolactone: An Anti-Androgenic and Anti-Hypertensive Drug That May Provide Protection against the Novel Coronavirus (SARS-CoV-2) Induced Acute Respiratory Distress Syndrome (ARDS) in Covid-19. Frontiers in Medicine, 7, Article No. 453. https://doi.org/10.3389/fmed.2020.00453 |
[57] | Kotfis, K., Lechowicz, K., Drozdzal, S., et al. (2021) COVID-19—The Potential Beneficial Therapeutic Effects of Spironolactone during SARS-CoV-2 Infection. Pharmaceuticals (Basel), 14, 71. https://doi.org/10.3390/ph14010071 |
[58] | 刘峰, 徐鑫, 胡春晓, 韩威力. 肺移植治疗新型冠状病毒感染后肺纤维化三例临床经验[J]. 中华器官移植杂志, 2020, 41(4): 199-202. |
[59] | Greenhalgh, T., Knight, M., A’Court, C., Buxton, M. and Husain, L. (2020) Management of Post-Acute Covid-19 in Primary Care. BMJ, 370, m3026. https://doi.org/10.1136/bmj.m3026 |