|
用于电解水的MOFs及衍生材料研究进展
|
Abstract:
电解水制氢作为应对能源危机的一种可持续策略,已受到广泛关注。金属有机骨架(MOFs)作为一类孔隙率和结构可调、成本低廉的新型多孔材料,在电催化领域展现出巨大潜力,已被应用于多种电催化反应中并表现出优异的催化活性。近年来,随着技术的不断进步,大量基于MOFs的电催化剂相继涌现。因此,及时总结相关文献报道对于研究人员准确设计MOFs基电催化剂并深化深入理解相关反应机理具有重要意义。本文综述了单金属、双金属、复合金属、负载金属氧化物基电催化剂,以及独立MOF衍生电极和原始MOF电极在析氢反应(HER)、析氧反应(OER)和全水解反应中的应用,并对MOFs基材料在电催化领域的发展方向和应用前景进行了展望。
Electrolytic water splitting for hydrogen production has been widely recognized as a sustainable strategy to address the ongoing energy crisis. Metal-organic frameworks (MOFs), a novel class of porous materials characterized by tunable porosity, adjustable structure, and low cost, have shown significant potential in the field of electrocatalysis. These materials have been applied to various electrocatalytic reactions, demonstrating good catalytic activity. In recent years, with continuous technological advancements, a large number of MOF-based electrocatalysts have emerged. Consequently, timely summarization of the relevant literature is crucial for researchers to accurately design MOF-based electrocatalysts and deepen their understanding of the related reaction mechanisms. This paper provides a comprehensive review of the applications of single-metal, double-metal, composite-metal, and supported metal oxide-based electrocatalysts, as well as freestanding MOF-derived electrodes and pristine MOFs electrodes, in the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting reaction. Finally, the future development directions and application prospects of MOF-based materials in the field of electrocatalysis are discussed.
[1] | Zhou, B., Gao, R., Zou, J. and Yang, H. (2022) Surface Design Strategy of Catalysts for Water Electrolysis. Small, 18, Article 2202336. https://doi.org/10.1002/smll.202202336 |
[2] | Tee, S.Y., Win, K.Y., Teo, W.S., Koh, L., Liu, S., Teng, C.P., et al. (2017) Recent Progress in Energy‐Driven Water Splitting. Advanced Science, 4, Article 1600337. https://doi.org/10.1002/advs.201600337 |
[3] | Li, W., Wang, C. and Lu, X. (2021) Integrated Transition Metal and Compounds with Carbon Nanomaterials for Electrochemical Water Splitting. Journal of Materials Chemistry A, 9, 3786-3827. https://doi.org/10.1039/d0ta09495a |
[4] | Gan, J., Huang, Z., Luo, W., Chen, W., Cao, Y., Qian, G., et al. (2021) Platelet Carbon Nanofibers as Support of Pt-CoO Electrocatalyst for Superior Hydrogen Evolution. Journal of Energy Chemistry, 52, 33-40. https://doi.org/10.1016/j.jechem.2020.04.036 |
[5] | Yi, J., Lee, W.H., Hwang, Y.J., et al. (2019) Effect of Pt Introduced on Ru-Based Electrocatalyst for Enhanced Oxygen Evolution Activity and Stability. Electrochemistry Communications, 104, Article No. 106469. https://doi.org/10.1016/j.elecom.2019.05.018 |
[6] | Zhang, Y., Wu, C., Jiang, H., Lin, Y., Liu, H., He, Q., et al. (2018) Atomic Iridium Incorporated in Cobalt Hydroxide for Efficient Oxygen Evolution Catalysis in Neutral Electrolyte. Advanced Materials, 30, Article 1707522. https://doi.org/10.1002/adma.201707522 |
[7] | Indra, A., Song, T. and Paik, U. (2018) Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage. Advanced Materials, 30, Article 1705146. https://doi.org/10.1002/adma.201705146 |
[8] | Zhou, W., Xue, Z., Liu, Q., Li, Y., Hu, J. and Li, G. (2020) Trimetallic MOF‐74 Films Grown on Ni Foam as Bifunctional Electrocatalysts for Overall Water Splitting. ChemSusChem, 13, 5647-5653. https://doi.org/10.1002/cssc.202001230 |
[9] | Furukawa, H., Cordova, K.E., O’Keeffe, M. and Yaghi, O.M. (2013) The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, Article 1230444. https://doi.org/10.1126/science.1230444 |
[10] | Kong, L., Liu, M., Huang, H., Xu, Y. and Bu, X. (2021) Metal/Covalent‐Organic Framework Based Cathodes for Metal‐ion Batteries. Advanced Energy Materials, 12, Article 2100172. https://doi.org/10.1002/aenm.202100172 |
[11] | He, J., Li, N., Li, Z., Zhong, M., Fu, Z., Liu, M., et al. (2021) Strategic Defect Engineering of Metal-Organic Frameworks for Optimizing the Fabrication of Single‐Atom Catalysts. Advanced Functional Materials, 31, Article 2103597. https://doi.org/10.1002/adfm.202103597 |
[12] | Sun, H., Yan, Z., Liu, F., Xu, W., Cheng, F. and Chen, J. (2019) Self‐Supported Transition‐Metal‐Based Electrocatalysts for Hydrogen and Oxygen Evolution. Advanced Materials, 32, Article 1806326. https://doi.org/10.1002/adma.201806326 |
[13] | Zhang, Q., Wang, Y., Wang, Y., Yang, S., Wu, X., Lv, B., et al. (2021) Electropolymerization of Cobalt Porphyrins and Corroles for the Oxygen Evolution Reaction. Chinese Chemical Letters, 32, 3807-3810. https://doi.org/10.1016/j.cclet.2021.04.048 |
[14] | Wang, X., He, J., Yu, B., Sun, B., Yang, D., Zhang, X., et al. (2019) CoSe2 Nanoparticles Embedded MOF-Derived Co-N-C Nanoflake Arrays as Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction. Applied Catalysis B: Environmental, 258, Article 117996. https://doi.org/10.1016/j.apcatb.2019.117996 |
[15] | Wang, X., Chen, Y., Yu, B., Wang, Z., Wang, H., Sun, B., et al. (2019) Hierarchically Porous W‐Doped CoP Nanoflake Arrays as Highly Efficient and Stable Electrocatalyst for pH‐Universal Hydrogen Evolution. Small, 15, Article 1902613. https://doi.org/10.1002/smll.201902613 |
[16] | Li, C., Zhang, H., Liu, M., Lang, F., Pang, J. and Bu, X. (2023) Recent Progress in Metal-Organic Frameworks (MOFs) for Electrocatalysis. Industrial Chemistry & Materials, 1, 9-38. https://doi.org/10.1039/d2im00063f |
[17] | Wu, Y., Zhou, W., Zhao, J., Dong, W., Lan, Y., Li, D., et al. (2017) Surfactant‐Assisted Phase‐Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. Angewandte Chemie, 129, 13181-13185. https://doi.org/10.1002/ange.201707238 |
[18] | Luo, Y., Yang, X., He, L., Zheng, Y., Pang, J., Wang, L., et al. (2022) Structural and Electronic Modulation of Iron-Based Bimetallic Metal-Organic Framework Bifunctional Electrocatalysts for Efficient Overall Water Splitting in Alkaline and Seawater Environment. ACS Applied Materials & Interfaces, 14, 46374-46385. https://doi.org/10.1021/acsami.2c05181 |
[19] | Cheng, W., Zhang, H., Luan, D., et al. (2021) Exposing Unsaturated Cu1-O2 Sites in Nanoscale Cu-MOF for Efficient Electro-Catalytic Hydrogen Evolution. Science Advances, 7, eabg2580. https://doi.org/10.1126/sciadv.abg2580 |
[20] | Wang, L., Song, L., Yang, Z., Chang, Y., Hu, F., Li, L., et al. (2022) Electronic Modulation of Metal-Organic Frameworks by Interfacial Bridging for Efficient pH‐Universal Hydrogen Evolution. Advanced Functional Materials, 33, Article 2210322. https://doi.org/10.1002/adfm.202210322 |
[21] | Zhu, D., Liu, J., Zhao, Y., Zheng, Y. and Qiao, S. (2019) Engineering 2D Metal-Organic Framework/MoS2 Interface for Enhanced Alkaline Hydrogen Evolution. Small, 15, Article 1805511. https://doi.org/10.1002/smll.201805511 |
[22] | Deng, L., Hu, F., Ma, M., Huang, S., Xiong, Y., Chen, H., et al. (2021) Electronic Modulation Caused by Interfacial Ni‐O‐M (M = Ru, Ir, Pd) Bonding for Accelerating Hydrogen Evolution Kinetics. Angewandte Chemie International Edition, 60, 22276-22282. https://doi.org/10.1002/anie.202110374 |
[23] | Rui, K., Zhao, G., Lao, M., Cui, P., Zheng, X., Zheng, X., et al. (2019) Direct Hybridization of Noble Metal Nanostructures on 2D Metal-Organic Framework Nanosheets to Catalyze Hydrogen Evolution. Nano Letters, 19, 8447-8453. https://doi.org/10.1021/acs.nanolett.9b02729 |
[24] | Zheng, W., Liu, M. and Lee, L.Y.S. (2019) Electrochemical Instability of Metal-Organic Frameworks: In situ Spectroelectrochemical Investigation of the Real Active Sites. ACS Catalysis, 10, 81-92. https://doi.org/10.1021/acscatal.9b03790 |
[25] | Zhao, S., Tan, C., He, C., An, P., Xie, F., Jiang, S., et al. (2020) Structural Transformation of Highly Active Metal-Organic Framework Electrocatalysts during the Oxygen Evolution Reaction. Nature Energy, 5, 881-890. https://doi.org/10.1038/s41560-020-00709-1 |
[26] | Ren, J., Wan, C., Pei, T., Lv, X. and Yuan, Z. (2020) Promotion of Electrocatalytic Nitrogen Reduction Reaction on N-Doped Porous Carbon with Secondary Heteroatoms. Applied Catalysis B: Environmental, 266, Article 118633. https://doi.org/10.1016/j.apcatb.2020.118633 |
[27] | Zhao, S., Wang, Y., Dong, J., He, C., Yin, H., An, P., et al. (2016) Ultrathin Metal-Organic Framework Nanosheets for Electrocatalytic Oxygen Evolution. Nature Energy, 1, Article No. 16184. https://doi.org/10.1038/nenergy.2016.184 |
[28] | Kandambeth, S., Kale, V.S., Fan, D., Bau, J.A., Bhatt, P.M., Zhou, S., et al. (2022) Unveiling Chemically Robust Bimetallic Squarate‐Based Metal-Organic Frameworks for Electrocatalytic Oxygen Evolution Reaction. Advanced Energy Materials, 13, Article 2202964. https://doi.org/10.1002/aenm.202202964 |
[29] | Zhao, L., Dong, B., Li, S., Zhou, L., Lai, L., Wang, Z., et al. (2017) Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal-Organic Frameworks and Ti3C2Tx Nanosheets for Electrocatalytic Oxygen Evolution. ACS Nano, 11, 5800-5807. https://doi.org/10.1021/acsnano.7b01409 |
[30] | Wang, Y., Liu, B., Shen, X., Arandiyan, H., Zhao, T., Li, Y., et al. (2021) Engineering the Activity and Stability of MOF‐Nanocomposites for Efficient Water Oxidation. Advanced Energy Materials, 11, Article 2003759. https://doi.org/10.1002/aenm.202003759 |
[31] | Guan, C., Xiao, W., Wu, H., Liu, X., Zang, W., Zhang, H., et al. (2018) Hollow Mo-Doped CoP Nanoarrays for Efficient Overall Water Splitting. Nano Energy, 48, 73-80. https://doi.org/10.1016/j.nanoen.2018.03.034 |
[32] | Chen, Z., Fei, B., Hou, M., Yan, X., Chen, M., Qing, H., et al. (2020) Ultrathin Prussian Blue Analogue Nanosheet Arrays with Open Bimetal Centers for Efficient Overall Water Splitting. Nano Energy, 68, Article 104371. https://doi.org/10.1016/j.nanoen.2019.104371 |