全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

通过重排实现羰基化合物α-芳基化研究进展
Research Progress in the α-Arylation of Carbonyl Compounds by Rearrangement

DOI: 10.12677/jocr.2024.124049, PP. 505-512

Keywords: 羰基化合物,芳基化,重排反应
Carbonyl Compound
, Arylation, Rearrangement Reaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

羰基化合物的α-芳基化是有机合成中非常重要的一类反应,在制药行业受到广泛关注。该类化合物的常规合成方法具有一定的局限性,例如使用化学计量的有毒试剂和苛刻的反应条件。另外,金属催化的羰基化合物的α-芳基化也得到了很大的发展。但反应过程中,需要使用价格昂贵的金属试剂。通过重排反应,也能实现羰基化合物的α-芳基化。反应不涉及有毒试剂和金属催化剂的使用,且底物适用范围广泛,反应条件温和。本文综述了重排反应在这一领域的最新进展。重点介绍了芳基高价碘,芳基四价硫,芳胺参与的[3,3]重排和磺酰胺参与的迁移重排在羰基化合物的α-芳基化方面的研究进展。
The α-arylation of carbonyl compounds is a very important reaction in organic synthesis, which has received wide attention in the pharmaceutical industry. The conventional synthesis methods of these compounds have some limitations, such as the use of stoichiometric toxic reagents and harsh reaction conditions. In addition, the metal-catalyzed α-arylation of carbonyl compounds has also been greatly developed. However, expensive metal reagents are needed in the reaction process. The rearrangement reaction can also realize the alpha-arylation of the carbonyl compound. The reaction does not involve the use of toxic reagents and metal catalysts, and has wide application range of substrates and mild reaction conditions. In this paper, the recent progress of rearrangement reactions in this field is reviewed. In this paper, the research progress of α-arylation of carbonyl compounds by [3,3] rearrangement involving aryl hypervalent iodine, aryl tetravalent sulfur, aromatic amine and migration rearrangement involving sulfonamide is emphatically introduced.

References

[1]  Johansson, C.C.C. and Colacot, T.J. (2010) Metallkatalysierte α‐Arylierungen von Carbonylen und verwandten Molekülen: aktuelle Trends bei der C‐C‐Kupplung über C‐H‐Funktionalisierung. Angewandte Chemie, 122, 686-718.
https://doi.org/10.1002/ange.200903424
[2]  Bellina, F. and Rossi, R. (2009) Transition Metal-Catalyzed Direct Arylation of Substrates with Activated sp3-Hybridized C-H Bonds and Some of Their Synthetic Equivalents with Aryl Halides and Pseudohalides. Chemical Reviews, 110, 1082-1146.
https://doi.org/10.1021/cr9000836
[3]  Ma, D. and Cai, Q. (2008) Copper/Amino Acid Catalyzed Cross-Couplings of Aryl and Vinyl Halides with Nucleophiles. Accounts of Chemical Research, 41, 1450-1460.
https://doi.org/10.1021/ar8000298
[4]  Culkin, D.A. and Hartwig, J.F. (2003) Palladium-Catalyzed α-Arylation of Carbonyl Compounds and Nitriles. Accounts of Chemical Research, 36, 234-245.
https://doi.org/10.1021/ar0201106
[5]  Mąkosza, M. (2010) Nucleophilic Substitution of Hydrogen in Electron-Deficient Arenes, a General Process of Great Practical Value. Chemical Society Reviews, 39, 2855-2868.
https://doi.org/10.1039/b822559c
[6]  Xu, Q., Gao, H., Yousufuddin, M., Ess, D.H. and Kürti, L. (2013) Aerobic, Transition-Metal-Free, Direct, and Regiospecific Mono-α-Arylation of Ketones: Synthesis and Mechanism by DFT Calculations. Journal of the American Chemical Society, 135, 14048-14051.
https://doi.org/10.1021/ja4074563
[7]  Thompson, A.D. and Huestis, M.P. (2012) Cyanide Anion as a Leaving Group in Nucleophilic Aromatic Substitution: Synthesis of Quaternary Centers at Azine Heterocycles. The Journal of Organic Chemistry, 78, 762-769.
https://doi.org/10.1021/jo302307y
[8]  Beyer, A., Buendia, J. and Bolm, C. (2012) Transition-Metal-Free Synthesis of Oxindoles by Potassium tert-Butoxide-Promoted Intramolecular α-Arylation. Organic Letters, 14, 3948-3951.
https://doi.org/10.1021/ol301704z
[9]  Merritt, E.A. and Olofsson, B. (2009) Diaryliodoniumsalze-aus dem Nichts ins Rampenlicht. Angewandte Chemie, 121, 9214-9234.
https://doi.org/10.1002/ange.200904689
[10]  Zhdankin, V.V. and Stang, P.J. (2008) Chemistry of Polyvalent Iodine. Chemical Reviews, 108, 5299-5358.
https://doi.org/10.1021/cr800332c
[11]  Elliott, G.I. and Konopelski, J.P. (2001) Arylation with Organolead and Organobismuth Reagents. Tetrahedron, 57, 5683-5705.
https://doi.org/10.1016/s0040-4020(01)00385-4
[12]  Barton, D.H.R. and Finet, J. (1987) Bismuth(V) Reagents in Organic Synthesis. Pure and Applied Chemistry, 59, 937-946.
https://doi.org/10.1351/pac198759080937
[13]  Xia, J., Brown, L.E. and Konopelski, J.P. (2007) Welwistatin Support Studies: Expansion and Limitation of Aryllead(IV) Coupling Reactions. The Journal of Organic Chemistry, 72, 6885-6890.
https://doi.org/10.1021/jo071156l
[14]  Elliott, G.I., Konopelski, J.P. and Olmstead, M.M. (1999) Diastereoselectivity in the Formation of Quaternary Centers with Aryllead(IV) Tricarboxylates. Organic Letters, 1, 1867-1870.
https://doi.org/10.1021/ol991143x
[15]  Morgan, J., Pinhey, J.T. and Rowe, B.A. (1997) α-Arylation of Ketones by Aryllead Triacetates. Effect of Methyl and Phenyl Substitution at the Α Position. Journal of the Chemical Society, Perkin Transactions 1, 1, 1005-1008.
https://doi.org/10.1039/a607543f
[16]  Orito, K., Sasaki, T. and Suginome, H. (1995) Photoinduced Molecular Transformations. 158. A Total Synthesis of (.+-.)-Methyl Piperitol: An Unsymmetrically Substituted 2,6-Diaryl-3,7-Dioxabicyclo[3.3.0]Octane Lignan. The Journal of Organic Chemistry, 60, 6208-6210.
https://doi.org/10.1021/jo00124a045
[17]  Dhokale, R.A., Thakare, P.R. and Mhaske, S.B. (2012) Transition-Metal-Free C-Arylation at Room Temperature by Arynes. Organic Letters, 14, 3994-3997.
https://doi.org/10.1021/ol301768r
[18]  Lennox, A.J.J. (2018) Meisenheimer Complexes in SNAr Reactions: Intermediates or Transition States? Angewandte Chemie International Edition, 57, 14686-14688.
https://doi.org/10.1002/anie.201809606
[19]  Tadross, P.M., Gilmore, C.D., Bugga, P., Virgil, S.C. and Stoltz, B.M. (2010) Regioselective Reactions of Highly Substituted Arynes. Organic Letters, 12, 1224-1227.
https://doi.org/10.1021/ol1000796
[20]  Liu, Y., Liang, Y., Pi, S. and Li, J. (2009) Selective Synthesis of o-Acylbenzylphosphonates by Insertion Reactions of Arynes into Β-Ketophosphonates. The Journal of Organic Chemistry, 74, 5691-5694.
https://doi.org/10.1021/jo900847u
[21]  Tambar, U.K. and Stoltz, B.M. (2005) The Direct Acyl-Alkylation of Arynes. Journal of the American Chemical Society, 127, 5340-5341.
https://doi.org/10.1021/ja050859m
[22]  Jensen, K.L., Franke, P.T., Nielsen, L.T., Daasbjerg, K. and Jørgensen, K.A. (2009) Anodic Oxidation and Organocatalysis: Direct Regio‐ and Stereoselective Access to Meta‐Substituted Anilines by α‐Arylation of Aldehydes. Angewandte Chemie, 122, 133-137.
https://doi.org/10.1002/ange.200904754
[23]  Beringer, F.M. and Forgione, P.S. (1963) Diaryliodonium Salts. XVIII. the Phenylation of Esters in T-Butyl Alcohol1-3. The Journal of Organic Chemistry, 28, 714-717.
https://doi.org/10.1021/jo01038a028
[24]  Norrby, P., Petersen, T.B., Bielawski, M. and Olofsson, B. (2010) α‐Arylation by Rearrangement: On the Reaction of Enolates with Diaryliodonium Salts. ChemistryA European Journal, 16, 8251-8254.
https://doi.org/10.1002/chem.201001110
[25]  Jia, Z., Gálvez, E., Sebastián, R.M., Pleixats, R., Álvarez‐Larena, Á., Martin, E., et al. (2014) An Alternative to the Classical α‐Arylation: The Transfer of an Intact 2‐Iodoaryl from Ari(O2CCF3)2. Angewandte Chemie International Edition, 53, 11298-11301.
https://doi.org/10.1002/anie.201405982
[26]  Wu, Y., Arenas, I., Broomfield, L.M., Martin, E. and Shafir, A. (2015) Hypervalent Activation as a Key Step for Dehydrogenative ortho C-C Coupling of Iodoarenes. ChemistryA European Journal, 21, 18779-18784.
https://doi.org/10.1002/chem.201503987
[27]  Huang, X. and Maulide, N. (2011) Sulfoxide-Mediated α-Arylation of Carbonyl Compounds. Journal of the American Chemical Society, 133, 8510-8513.
https://doi.org/10.1021/ja2031882
[28]  Peng, B., Geerdink, D., Farès, C. and Maulide, N. (2014) Chemoselective Intermolecular α‐Arylation of Amides. Angewandte Chemie International Edition, 53, 5462-5466.
https://doi.org/10.1002/anie.201402229
[29]  Bhunia, S., Ghosh, S., Dey, D. and Bisai, A. (2013) DDQ-Mediated Direct Intramolecular-Dehydrogenative-Coupling (IDC): Expeditious Approach to the Tetracyclic Core of Ergot Alkaloids. Organic Letters, 15, 2426-2429.
https://doi.org/10.1021/ol400899e
[30]  Stewart, J.D., Fields, S.C., Kochhar, K.S. and Pinnick, H.W. (1987) α-Arylation of Pyrrolidinones. The Journal of Organic Chemistry, 52, 2110-2113.
https://doi.org/10.1021/jo00386a045
[31]  Rossi, R.A. and Alonso, R.A. (1980) Photostimulated Reactions of N, N-Disubstituted Amide Enolate Anions with Haloarenes by the SRN1 Mechanism in Liquid Ammonia. The Journal of Organic Chemistry, 45, 1239-1241.
https://doi.org/10.1021/jo01295a015
[32]  Ghosh, S., De, S., Kakde, B.N., Bhunia, S., Adhikary, A. and Bisai, A. (2012) Intramolecular Dehydrogenative Coupling of Sp2 C-H and Sp3 C-H Bonds: An Expeditious Route to 2-Oxindoles. Organic Letters, 14, 5864-5867.
https://doi.org/10.1021/ol302767w
[33]  Jia, Y. and Kündig, E.P. (2009) Oxindole Synthesis by Direct Coupling of Csp2-H and Csp2-H Centers. Angewandte Chemie International Edition, 48, 1636-1639.
https://doi.org/10.1002/anie.200805652
[34]  Perry, A. and Taylor, R.J.K. (2009) Oxindole Synthesis by Direct C-H, Ar-H Coupling. Chemical Communications, 2009, 3249-3251.
https://doi.org/10.1039/b903516h
[35]  Hama, T., Liu, X., Culkin, D.A. and Hartwig, J.F. (2003) Palladium-Catalyzed α-Arylation of Esters and Amides under More Neutral Conditions. Journal of the American Chemical Society, 125, 11176-11177.
https://doi.org/10.1021/ja036792p
[36]  Shaaban, S., Tona, V., Peng, B. and Maulide, N. (2017) Hydroxamic Acids as Chemoselective (Ortho‐Amino)Arylation Reagents via Sigmatropic Rearrangement. Angewandte Chemie International Edition, 56, 10938-10941.
https://doi.org/10.1002/anie.201703667
[37]  Johnson, S., Kovács, E. and Greaney, M.F. (1964) Arylation and Alkenylation of Activated Alkyl Halides Using Sulfonamides. Chemical Communications, 56, 3222-3224.
https://doi.org/10.1039/D0CC00220H
[38]  Barlow, H.L., Rabet, P.T.G., Durie, A., Evans, T. and Greaney, M.F. (2019) Arylation Using Sulfonamides: Phenylacetamide Synthesis through Tandem Acylation-Smiles Rearrangement. Organic Letters, 21, 9033-9035.
https://doi.org/10.1021/acs.orglett.9b03429
[39]  Liu, J., Ba, D., Lv, W., Chen, Y., Zhao, Z. and Cheng, G. (2019) Base-Promoted Michael Addition/Smiles Rearrangement/N-Arylation Cascade: One-Step Synthesis of 1,2,3-Trisubstituted 4-Quinolones from Ynones and Sulfonamides. Advanced Synthesis and Catalysis, 362, 213-223.
[40]  Zhang, H., Xiao, Y., Lemmerer, M., Bortolato, T. and Maulide, N. (2024) Domino Conjugate Addition-1,4-Aryl Migration for the Synthesis of α, β-Difunctionalized Amides. JACS Au, 4, 2456-2461.
https://doi.org/10.1021/jacsau.4c00378

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133