Diabetes mellitus and hypertension are two of the most prevalent diseases affecting individuals across all age groups. Both conditions are linked to an increased risk of heart disease, peripheral vascular disease, stroke, retinopathy, and neuropathy. The study highlights that diabetes damages arteries and blood vessels, elevating the risk of heart attack and kidney failure. The coexistence of diabetes and hypertension exacerbates these complications, underscoring the importance of managing both conditions simultaneously. The study also focuses on Metformin, a well-established medication for treating type 2 diabetes. Recognized as one of the most effective treatment options, Metformin enhances blood glucose management by increasing insulin sensitivity, reducing insulin levels, and improving insulin action. This makes it a crucial drug for controlling diabetes efficiently and effectively. Furthermore, the findings indicate that diabetes predominantly affects individuals in low- and middle-income countries, contributing to higher mortality rates. The analysis of peer-reviewed journals and articles suggests that diabetes is a chronic disease with severe implications if preventive measures are not promptly implemented. Immediate action is necessary to mitigate the impact of diabetes and improve global health outcomes.
References
[1]
Roglic, G. (2016) WHO Global Report on Diabetes: A Summary. International Journal of Noncommunicable Diseases, 1, 3-8. https://doi.org/10.4103/2468-8827.184853
Misra, A., Gopalan, H., Jayawardena, R., Hills, A.P., Soares, M., Reza-Albarrán, A.A., et al. (2019) Diabetes in Developing Countries. Journal of Diabetes, 11, 522-539. https://doi.org/10.1111/1753-0407.12913
[4]
Rowley, W.R., Bezold, C., Arikan, Y., Byrne, E. and Krohe, S. (2017) Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Population Health Management, 20, 6-12. https://doi.org/10.1089/pop.2015.0181
[5]
Lehrke, M. and Marx, N. (2017) Diabetes Mellitus and Heart Failure. The American Journal of Cardiology, 120, S37-S47. https://doi.org/10.1016/j.amjcard.2017.05.014
[6]
Khangura, D., Kurukulasuriya, L.R., Whaley-Connell, A. and Sowers, J.R. (2018) Diabetes and Hypertension: Clinical Update. American Journal of Hypertension, 31, 515-521. https://doi.org/10.1093/ajh/hpy025
[7]
Whicher, C.A., O’Neill, S. and Holt, R.I.G. (2020) Diabetes in the UK: 2019. Diabetic Medicine, 37, 242-247. https://doi.org/10.1111/dme.14225
[8]
Colberg, S.R., Sigal, R.J., Yardley, J.E., Riddell, M.C., Dunstan, D.W., Dempsey, P.C., et al. (2016) Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care, 39, 2065-2079. https://doi.org/10.2337/dc16-1728
Bullard, K.M., Cowie, C.C., Lessem, S.E., Saydah, S.H., Menke, A., Geiss, L.S., et al. (2018) Prevalence of Diagnosed Diabetes in Adults by Diabetes Type—United States, 2016. MMWR. Morbidity and Mortality Weekly Report, 67, 359-361. https://doi.org/10.15585/mmwr.mm6712a2
[11]
Anjana, R.M., Baskar, V., Nair, A.T.N., Jebarani, S., Siddiqui, M.K., Pradeepa, R., et al. (2020) Novel Subgroups of Type 2 Diabetes and Their Association with Microvascular Outcomes in an Asian Indian Population: A Data-Driven Cluster Analysis: The INSPIRED Study. BMJ Open Diabetes Research & Care, 8, e001506. https://doi.org/10.1136/bmjdrc-2020-001506
[12]
Tanabe, H., Masuzaki, H. and Shimabukuro, M. (2021) Novel Strategies for Glycaemic Control and Preventing Diabetic Complications Applying the Clustering-Based Classification of Adult-Onset Diabetes Mellitus: A Perspective. Diabetes Research and Clinical Practice, 180, Article ID: 109067. https://doi.org/10.1016/j.diabres.2021.109067
[13]
Tanabe, H., Saito, H., Kudo, A., Machii, N., Hirai, H., Maimaituxun, G., et al. (2020) Factors Associated with Risk of Diabetic Complications in Novel Cluster-Based Diabetes Subgroups: A Japanese Retrospective Cohort Study. Journal of Clinical Medicine, 9, Article No. 2083. https://doi.org/10.3390/jcm9072083
[14]
Ahlqvist, E., Storm, P., Käräjämäki, A., Martinell, M., Dorkhan, M., Carlsson, A., et al. (2018) Novel Subgroups of Adult-Onset Diabetes and Their Association with Outcomes: A Data-Driven Cluster Analysis of Six Variables. The Lancet Diabetes & Endocrinology, 6, 361-369. https://doi.org/10.1016/s2213-8587(18)30051-2
[15]
Drewes, A.M. (2016) Brain Changes in Diabetes Mellitus Patients with Gastrointestinal Symptoms. World Journal of Diabetes, 7, 14-26. https://doi.org/10.4239/wjd.v7.i2.14
[16]
Lin, K., Park, C., Li, M., Wang, X., Li, X., Li, W., et al. (2017) Effects of Depression, Diabetes Distress, Diabetes Self-Efficacy, and Diabetes Self-Management on Glycemic Control among Chinese Population with Type 2 Diabetes Mellitus. Diabetes Research and Clinical Practice, 131, 179-186. https://doi.org/10.1016/j.diabres.2017.03.013
[17]
Kandhasamy, J.P. and Balamurali, S. (2015) Performance Analysis of Classifier Models to Predict Diabetes Mellitus. Procedia Computer Science, 47, 45-51. https://doi.org/10.1016/j.procs.2015.03.182
[18]
Liang, D., Cai, X., Guan, Q., Ou, Y., Zheng, X. and Lin, X. (2023) Burden of Type 1 and Type 2 Diabetes and High Fasting Plasma Glucose in Europe, 1990-2019: A Comprehensive Analysis from the Global Burden of Disease Study 2019. Frontiers in Endocrinology, 14, Article 1307432. https://doi.org/10.3389/fendo.2023.1307432
[19]
Dao, L., Choi, S. and Freeby, M. (2022) Type 2 Diabetes Mellitus and Cognitive Function: Understanding the Connections. Current Opinion in Endocrinology, Diabetes & Obesity, 30, 7-13. https://doi.org/10.1097/med.0000000000000783
[20]
Tsimihodimos, V., Gonzalez-Villalpando, C., Meigs, J.B. and Ferrannini, E. (2018) Hypertension and Diabetes Mellitus. Hypertension, 71, 422-428. https://doi.org/10.1161/hypertensionaha.117.10546
[21]
Minari, T.P., Tácito, L.H.B., Yugar, L.B.T., Ferreira-Melo, S.E., Manzano, C.F., Pires, A.C., et al. (2023) Nutritional Strategies for the Management of Type 2 Diabetes Mellitus: A Narrative Review. Nutrients, 15, Article No. 5096. https://doi.org/10.3390/nu15245096
[22]
Halim, M. and Halim, A. (2019) The Effects of Inflammation, Aging and Oxidative Stress on the Pathogenesis of Diabetes Mellitus (Type 2 Diabetes). Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 1165-1172. https://doi.org/10.1016/j.dsx.2019.01.040
[23]
Omidian, M., Mahmoudi, M., Abshirini, M., Eshraghian, M.R., Javanbakht, M.H., Zarei, M., et al. (2019) Effects of Vitamin D Supplementation on Depressive Symptoms in Type 2 Diabetes Mellitus Patients: Randomized Placebo-Controlled Double-Blind Clinical Trial. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 2375-2380. https://doi.org/10.1016/j.dsx.2019.06.011
[24]
Holt, R.I. (2024) Overview of Glucose Metabolism. In: Holt, R.I.G., Cockram, C., Flyvbjerg, A. and Goldstein, B.J., Eds., Textbook of Diabetes, Blackwell, 75-83.
[25]
Ablakulova, S. and Nishantaev, M. (2023) The Importance of The Liver in Carbo-hydrate Metabolism. Science and Innovation, 2, 44-47.
[26]
Blackwell, M. and Wheeler, B.J. (2016) Clinical Review: The Misreporting of Logbook, Download, and Verbal Self-Measured Blood Glucose in Adults and Children with Type I Diabetes. Acta Diabetologica, 54, 1-8. https://doi.org/10.1007/s00592-016-0907-4
[27]
Güemes, M., Rahman, S.A. and Hussain, K. (2015) What Is a Normal Blood Glucose? Archives of Disease in Childhood, 101, 569-574. https://doi.org/10.1136/archdischild-2015-308336
[28]
Alonge, K.M., D’Alessio, D.A. and Schwartz, M.W. (2020) Brain Control of Blood Glucose Levels: Implications for the Pathogenesis of Type 2 Diabetes. Diabetologia, 64, 5-14. https://doi.org/10.1007/s00125-020-05293-3
[29]
Valensi, P., Prévost, G., Schnell, O., Standl, E. and Ceriello, A. (2019) Targets for Blood Glucose: What Have the Trials Told Us. European Journal of Preventive Cardiology, 26, 64-72. https://doi.org/10.1177/2047487319885456
[30]
Kesavadev, J., Ramachandran, L. and Krishnan, G. (2017) Glucose Monitoring Technologies—Complementary or Competitive? Role of Continuous Glucose Monitoring versus Flash Glucose Monitoring versus Self-Monitoring of Blood Glucose. Journal of Diabetology, 8, 61-67. https://doi.org/10.4103/jod.jod_14_17
[31]
Russell, W.R., Baka, A., Björck, I., Delzenne, N., Gao, D., Griffiths, H.R., et al. (2013) Impact of Diet Composition on Blood Glucose Regulation. Critical Reviews in Food Science and Nutrition, 56, 541-590. https://doi.org/10.1080/10408398.2013.792772
[32]
Tracy, E.L., Berg, C.A., Kent De Grey, R.G., Butner, J., Litchman, M.L., Allen, N.A., et al. (2019) The Role of Self-Regulation Failures and Self-Care in the Link between Daily Sleep Quality and Blood Glucose among Adults with Type 1 Diabetes. Annals of Behavioral Medicine, 54, 249-257. https://doi.org/10.1093/abm/kaz044
[33]
Grelli, K.N., Gindville, M.C., Walker, C.H. and Jordan, L.C. (2016) Association of Blood Pressure, Blood Glucose, and Temperature with Neurological Outcome after Childhood Stroke. JAMA Neurology, 73, 829-835. https://doi.org/10.1001/jamaneurol.2016.0992
[34]
Kimura, G. (2016) A Pathophysiological Hypothesis Is Essential in Inhibiting Sodium-Glucose Cotransporter and Its Compelling Indication in Type 2 Diabetes. Journal of the American Society of Hypertension, 10, 271-278. https://doi.org/10.1016/j.jash.2016.01.009
[35]
Zafari, N., Asgari, S., Lotfaliany, M., Hadaegh, A., Azizi, F. and Hadaegh, F. (2017) Impact of Hypertension versus Diabetes on Cardiovascular and All-Cause Mortality in Iranian Older Adults: Results of 14 Years of Follow-Up. Scientific Reports, 7, Article No. 14220. https://doi.org/10.1038/s41598-017-14631-2
[36]
Lee, W. and Kim, J. (2017) Diabetic Cardiomyopathy: Where We Are and Where We Are Going. The Korean Journal of Internal Medicine, 32, 404-421. https://doi.org/10.3904/kjim.2016.208
[37]
Strain, W.D. and Paldánius, P.M. (2018) Diabetes, Cardiovascular Disease and the Microcirculation. Cardiovascular Diabetology, 17, Article No. 57. https://doi.org/10.1186/s12933-018-0703-2
[38]
Petersmann, A., Müller-Wieland, D., Müller, U.A., Landgraf, R., Nauck, M., Freckmann, G., et al. (2019) Definition, Classification and Diagnosis of Diabetes Mellitus. Experimental and Clinical Endocrinology & Diabetes, 127, S1-S7. https://doi.org/10.1055/a-1018-9078
[39]
Oguntibeju, O.O. (2019) Type 2 Diabetes Mellitus, Oxidative Stress, and Inflammation: Examining the Links. International Journal of Physiology, Pathophysiology, and Pharmacology, 11, 45-63.
[40]
Punthakee, Z., Goldenberg, R. and Katz, P. (2018) Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Canadian Journal of Diabetes, 42, S10-S15. https://doi.org/10.1016/j.jcjd.2017.10.003
[41]
Petrie, J.R., Guzik, T.J. and Touyz, R.M. (2018) Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Canadian Journal of Cardiology, 34, 575-584. https://doi.org/10.1016/j.cjca.2017.12.005
[42]
Böhm, M., Schumacher, H., Teo, K.K., Lonn, E.M., Mahfoud, F., Mann, J.F.E., et al. (2019) Cardiovascular Outcomes and Achieved Blood Pressure in Patients with and without Diabetes at High Cardiovascular Risk. European Heart Journal, 40, 2032-2043. https://doi.org/10.1093/eurheartj/ehz149
[43]
Brunström, M. and Carlberg, B. (2016) Effect of Antihypertensive Treatment at Different Blood Pressure Levels in Patients with Diabetes Mellitus: Systematic Review and Meta-Analyses. BMJ, 352, i717. https://doi.org/10.1136/bmj.i717
[44]
Rahman, F., McEvoy, J.W., Ohkuma, T., Marre, M., Hamet, P., Harrap, S., et al. (2019) Effects of Blood Pressure Lowering on Clinical Outcomes According to Baseline Blood Pressure and Cardiovascular Risk in Patients with Type 2 Diabetes Mellitus. Hypertension, 73, 1291-1299. https://doi.org/10.1161/hypertensionaha.118.12414
[45]
Park, S., Kario, K., Park, C., Huang, Q., Cheng, H., Hoshide, S., et al. (2016) Target Blood Pressure in Patients with Diabetes: Asian Perspective. Yonsei Medical Journal, 57, 1307-1311. https://doi.org/10.3349/ymj.2016.57.6.1307
[46]
He, J., Zhang, F. and Han, Y. (2017) Effect of Probiotics on Lipid Profiles and Blood Pressure in Patients with Type 2 Diabetes. Medicine, 96, e9166. https://doi.org/10.1097/md.0000000000009166
[47]
Cole, J.B. and Florez, J.C. (2020) Genetics of Diabetes Mellitus and Diabetes Complications. Nature Reviews Nephrology, 16, 377-390. https://doi.org/10.1038/s41581-020-0278-5
[48]
Padhi, S., Nayak, A.K. and Behera, A. (2020) Type II Diabetes Mellitus: A Review on Recent Drug Based Therapeutics. Biomedicine & Pharmacotherapy, 131, Article ID: 110708. https://doi.org/10.1016/j.biopha.2020.110708
[49]
Rameez, R.M., Sadana, D., Kaur, S., Ahmed, T., Patel, J., Khan, M.S., et al. (2019) Association of Maternal Lactation with Diabetes and Hypertension: A Systematic Review and Meta-Analysis. JAMA Network Open, 2, e1913401. https://doi.org/10.1001/jamanetworkopen.2019.13401
Christofides, E.A. (2019) Practical Insights into Improving Adherence to Metformin Therapy in Patients with Type 2 Diabetes. Clinical Diabetes, 37, 234-241. https://doi.org/10.2337/cd18-0063
[52]
de Boer, I.H., Bangalore, S., Benetos, A., Davis, A.M., Michos, E.D., Muntner, P., et al. (2017) Diabetes and Hypertension: A Position Statement by the American Diabetes Association. Diabetes Care, 40, 1273-1284. https://doi.org/10.2337/dci17-0026
[53]
Bagepally, B.S., Gurav, Y.K., Anothaisintawee, T., Youngkong, S., Chaikledkaew, U. and Thakkinstian, A. (2019) Cost Utility of Sodium-Glucose Cotransporter 2 Inhibitors in the Treatment of Metformin Monotherapy Failed Type 2 Diabetes Patients: A Systematic Review and Meta-Analysis. Value in Health, 22, 1458-1469. https://doi.org/10.1016/j.jval.2019.09.2750
[54]
Roumie, C.L., Min, J.Y., D’Agostino McGowan, L., Presley, C., Grijalva, C.G., Hackstadt, A.J., et al. (2017) Comparative Safety of Sulfonylurea and Metformin Monotherapy on the Risk of Heart Failure: A Cohort Study. Journal of the American Heart Association, 6, e005379. https://doi.org/10.1161/jaha.116.005379