|
GRg3对直肠癌放疗患者肠道菌群影响的研究进展
|
Abstract:
直肠癌发病率逐年递增,由于早期筛查的普及率低,中老年人规律接受肠镜随访的比例低,大多数结直肠癌患者因出现典型症状而就诊时肿瘤已处于进展期。放疗是局部晚期直肠癌患者治疗中至关重要的一部分,腹盆腔肿瘤患者放疗后会有不同程度的放射性肠损伤,合并肠道菌群紊乱。传统药物治疗效果不佳,且在免疫治疗方向大多是微卫星稳定(MSS),对基于抗PD-1的免疫治疗没有反应,迫切需要新的治疗方案。人参皂苷Rg3 (Ginsenoside Rg3, GRg3)是从人参中提取的活性单体,具有抗炎、抗肿瘤、抗血管生成及增强免疫功能等作用。了解GRg3与肠道菌群及其代谢产物之间的关系以调节肠道微生态,可能增强直肠癌免疫治疗敏感性,为直肠癌免疫治疗寻找新的突破口。本文分别从GRg3、肠道菌群以及肿瘤免疫功能三者之间关系进行综述。
The incidence of rectal cancer is increasing year by year. Due to the low penetration rate of early screening and the low proportion of middle-aged and elderly people regularly receiving colonoscopy follow-up, most patients with colorectal cancer have advanced tumors when they see a doctor due to typical symptoms. Radiotherapy is a crucial part of the treatment of patients with locally advanced rectal cancer. After radiotherapy, patients with abdominal and pelvic tumors will have different degrees of radioactive intestinal damage combined with intestinal flora disorder. Traditional drug therapy is not effective, and most of them are microsatellite stabilized (MSS) in the direction of immunotherapy, which does not respond to anti-PD-1-based immunotherapy, so a new treatment plan is urgently needed. Ginsenoside Rg3 (GRg3) is an active monomer extracted from ginseng, which has anti-inflammatory, anti-tumor, anti-angiogenesis and immune function enhancement effects. Understanding the relationship between GRg3 and intestinal flora and its metabolites in order to regulate intestinal microecology may enhance the sensitivity of immunotherapy for rectal cancer and find a new breakthrough for immunotherapy for rectal cancer. This paper reviews the relationship among GRg3, intestinal flora and tumor immune function.
[1] | 冉锐. 全程新辅助治疗应用于高危局部进展期直肠癌的疗效及安全性分析[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2022. |
[2] | 程思远, 韩子翰, 郭晓欢, 等. 肠道菌群与肿瘤免疫治疗疗效及不良反应关系的研究进展[J]. 实用肿瘤学杂志, 2022, 36(6): 520-525. |
[3] | Chater, C., Saudemont, A. and Zerbib, P. (2019) Chronic Radiation Enteritis. Journal of Visceral Surgery, 156, 175-176. https://doi.org/10.1016/j.jviscsurg.2018.09.002 |
[4] | Peng, Z., Cheng, S., Kou, Y., Wang, Z., Jin, R., Hu, H., et al. (2020) The Gut Microbiome Is Associated with Clinical Response to Anti-PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer. Cancer Immunology Research, 8, 1251-1261. https://doi.org/10.1158/2326-6066.cir-19-1014 |
[5] | Dai, Z., Coker, O.O., Nakatsu, G., Wu, W.K.K., Zhao, L., Chen, Z., et al. (2018) Multi-Cohort Analysis of Colorectal Cancer Metagenome Identified Altered Bacteria across Populations and Universal Bacterial Markers. Microbiome, 6, Article No. 70. https://doi.org/10.1186/s40168-018-0451-2 |
[6] | 宋德心, 王伟东, 高瑞祺, 等. 肠道菌群在结直肠癌发生发展和诊断治疗中的作用研究进展[J]. 中国普通外科杂志, 2022, 31(4): 527-536. |
[7] | Tang, J., Xu, L., Zeng, Y. and Gong, F. (2021) Effect of Gut Microbiota on LPS-Induced Acute Lung Injury by Regulating the TLR4/NF-κB Signaling Pathway. International Immunopharmacology, 91, Article ID: 107272. https://doi.org/10.1016/j.intimp.2020.107272 |
[8] | Wang, Z., Wang, Q., Wang, X., Zhu, L., Chen, J., Zhang, B., et al. (2019) Gut Microbial Dysbiosis Is Associated with Development and Progression of Radiation Enteritis during Pelvic Radiotherapy. Journal of Cellular and Molecular Medicine, 23, 3747-3756. https://doi.org/10.1111/jcmm.14289 |
[9] | Belcheva, A., Irrazabal, T., Robertson, S.J., Streutker, C., Maughan, H., Rubino, S., et al. (2014) Gut Microbial Metabolism Drives Transformation of MSH2-Deficient Colon Epithelial Cells. Cell, 158, 288-299. https://doi.org/10.1016/j.cell.2014.04.051 |
[10] | 章菲菲, 毛凌燕, 蔡娟, 等. 结直肠癌患者的肠道菌群变化情况分析[J]. 中国社区医师, 2022, 38(9): 90-92. |
[11] | Wong, C.C. and Yu, J. (2023) Gut Microbiota in Colorectal Cancer Development and Therapy. Nature Reviews Clinical Oncology, 20, 429-452. https://doi.org/10.1038/s41571-023-00766-x |
[12] | Blaak, E.E., Canfora, E.E., Theis, S., Frost, G., Groen, A.K., Mithieux, G., et al. (2020) Short Chain Fatty Acids in Human Gut and Metabolic Health. Beneficial Microbes, 11, 411-455. https://doi.org/10.3920/bm2020.0057 |
[13] | Neag, M., Craciun, A., Inceu, A., Burlacu, D., Craciun, C. and Buzoianu, A. (2022) Short-Chain Fatty Acids as Bacterial Enterocytes and Therapeutic Target in Diabetes Mellitus Type 2. Biomedicines, 11, Article 72. https://doi.org/10.3390/biomedicines11010072 |
[14] | Canfora, E.E., Jocken, J.W. and Blaak, E.E. (2015) Short-Chain Fatty Acids in Control of Body Weight and Insulin Sensitivity. Nature Reviews Endocrinology, 11, 577-591. https://doi.org/10.1038/nrendo.2015.128 |
[15] | Calvo-Barreiro, L., Zhang, L., Abdel-Rahman, S.A., Naik, S.P. and Gabr, M. (2023) Gut Microbial-Derived Metabolites as Immune Modulators of T Helper 17 and Regulatory T Cells. International Journal of Molecular Sciences, 24, Article 1806. https://doi.org/10.3390/ijms24021806 |
[16] | Cheng, J., Zhang, Y., Ge, Y., Li, W., Cao, Y., Qu, Y., et al. (2020) Sodium Butyrate Promotes Milk Fat Synthesis in Bovine Mammary Epithelial Cells via GPR41 and Its Downstream Signalling Pathways. Life Sciences, 259, Article ID: 118375. https://doi.org/10.1016/j.lfs.2020.118375 |
[17] | Hale, M.F. (2020) Radiation Enteritis: From Diagnosis to Management. Current Opinion in Gastroenterology, 36, 208-214. https://doi.org/10.1097/mog.0000000000000632 |
[18] | Ganesh, K., Stadler, Z.K., Cercek, A., Mendelsohn, R.B., Shia, J., Segal, N.H., et al. (2019) Immunotherapy in Colorectal Cancer: Rationale, Challenges and Potential. Nature Reviews Gastroenterology & Hepatology, 16, 361-375. https://doi.org/10.1038/s41575-019-0126-x |
[19] | Wu, L., Bai, L., Dai, W., Wu, Y., Xi, P., Zhang, J., et al. (2024) Ginsenoside Rg3: A Review of Its Anticancer Mechanisms and Potential Therapeutic Applications. Current Topics in Medicinal Chemistry, 24, 869-884. https://doi.org/10.2174/0115680266283661240226052054 |
[20] | Li, X., Lin, L., Duan, X., Dai, J., Hu, T. and Cai, H. (2024) Efficacy and Mechanism of Action of Ginsenoside Rg3 on Radiation Proctitis in Rats. Immunity, Inflammation and Disease, 12, e70015. https://doi.org/10.1002/iid3.70015 |
[21] | Pan, L., Zhang, T., Sun, H. and Liu, G. (2019) Ginsenoside Rg3 (Shenyi Capsule) Combined with Chemotherapy for Digestive System Cancer in China: A Meta-Analysis and Systematic Review. Evidence-Based Complementary and Alternative Medicine, 2019, Article ID: 2417418. https://doi.org/10.1155/2019/2417418 |
[22] | Huang, W., Huang, T., Yeh, K., Chen, Y., Shen, S. and Liou, C. (2021) Ginsenoside Rg3 Ameliorates Allergic Airway Inflammation and Oxidative Stress in Mice. Journal of Ginseng Research, 45, 654-664. https://doi.org/10.1016/j.jgr.2021.03.002 |