全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络药理学研究佛手–香橼药对治疗心绞痛的作用机制
The Study of the Mechanism of Action of Bergamot-Citron Medicine in the Treatment of Angina Pectoris Based on Network Pharmacology

DOI: 10.12677/acm.2024.14123067, PP. 208-213

Keywords: 心绞痛,网络药理学,佛手,香橼
Angina Pectoris
, Network Pharmacology, Bergamot, Citron

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:利用网络药理学方法探讨“佛手–香橼”药对在心绞痛患者中的临床价值。方法:本研究拟以“佛手–香橼”为研究对象,采用Cytoscape 3.7.2构建“活性成分–靶点”网络图谱。通过GeneCards数据库收集心绞痛的相关靶点,将药物的有效靶点与疾病相关靶点进行关联,选取交集靶基因上传STRING 11.0数据库建立蛋白质相互作用网络,并导入Cytoscape 3.7.2对其进行处理。利用Metascape平台对其进行GO富集分析与KEGG Pathway富集分析。结果:共获得佛手和香橼活性成分12个,对应靶点278个,心绞痛相关靶点4478个。药物–疾病作用核心靶点98个,其中包括AKT1、PPARG、PTGS2、SRC、BCL2、MAPK3、EGFR等。结论:通过上述研究,初步阐明“佛手–香橼”对心绞痛“多途径,多靶点”的作用机理,为“佛手–香橼”在冠心病心绞痛防治中的应用提供新的研究思路和理论依据。
Objective: To investigate the clinical value of the “bergamot-citron” drug pair in angina pectoris patients using a network pharmacology approach. Methods: In this study, we used “bergamot-citron” as the research object, and Cytoscape 3.7.2 was used to construct an “active ingredient-target” network map. The GeneCards database was used to collect angina pectoris-related targets, correlate the effective targets of the drugs with the disease-related targets, select the intersecting target genes and upload them to the STRING 11.0 database to establish a protein interaction network, which was then imported into Cytoscape 3.7.2 for processing. The Metascape platform was used for GO enrichment analysis and KEGG Pathway enrichment analysis. Results: A total of 12 active components of bergamot and citron were obtained, corresponding to 278 targets, and 4478 angina-related targets. There were 98 drug-disease action core targets, including AKT1, PPARG, PTGS2, SRC, BCL2, MAPK3 and EGFR, etc. Conclusion: Through the above study, the mechanism of “multi-pathway, multi-target” of “bergamot-citron” on angina pectoris was initially elucidated, providing new research ideas and new applications of “Bergamot-citron” in the prevention and treatment of angina pectoris in coronary heart disease.

References

[1]  林果为, 王吉耀, 葛均波. 《实用内科学》第1~15版[J]. 科技与出版, 2017(12): 2.
[2]  《中国心血管健康与疾病报告2022》概要[J]. 中国介入心脏病学杂志, 2023, 31(7): 485-508.
[3]  周洋. 冠状动脉粥样硬化性心脏病患者药物治疗管理路径专家共识[J]. 临床药物治疗杂志, 2023, 21(6): 1-18.
[4]  王可仪, 王虎城, 金鑫瑶, 等. 银杏酮酯滴丸治疗冠心病心绞痛有效性与安全性的系统评价[J]. 中国中药杂志, 2021, 46(9): 2317-2324.
[5]  赵曙刚. 对1041例药品不良反应报告的分析及对策[J]. 中国医药科学, 2013, 3(1): 149-150, 167.
[6]  国家药典委员会. 中华人民共和国药典(一部) [M]. 北京: 中国医药科技出版社, 2020: 185, 270-271.
[7]  Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13.
https://doi.org/10.1186/1758-2946-6-13
[8]  王传池, 吴珊, 江丽杰, 等. 1990-2020年我国冠心病中医证的流行病学调查研究概况[J]. 中国中医基础医学杂志, 2020, 26(12): 1883-1893.
[9]  伍灏堃, 樊婷, 余天浩, 等. 冠状动脉支架置入术后药物洗脱球囊联合切割球囊的疗效[J]. 实用医学杂志, 2023, 39(3): 309-314.
[10]  Serruys, P.W., Kageyama, S., Garg, S. and Onuma, Y. (2022) In the Beginning There Was Angina Pectoris, at the End There Was Still Angina Pectoris. JACC: Cardiovascular Interventions, 15, 2519-2522.
https://doi.org/10.1016/j.jcin.2022.10.036
[11]  Park, J.H., Kim, J.S., Ahn, C., Hong, S.J., Ahn, K.J., Choi, J.W., et al. (2020) Prospective Partially Randomized Comparison of Clopidogrel Loading versus Maintenance Dosing to Prevent Periprocedural Myocardial Infarction after Stenting for Stable Angina Pectoris: Results from the “Method of Clopidogrel Pre-Treatment Undergoing”. International Journal of Clinical Pharmacology and Therapeutics, 58, 523-530.
https://doi.org/10.5414/cp203644
[12]  Singh, T., Bing, R., Dweck, M.R., van Beek, E.J.R., Mills, N.L., Williams, M.C., et al. (2020) Exercise Electrocardiography and Computed Tomography Coronary Angiography for Patients with Suspected Stable Angina Pectoris. JAMA Cardiology, 5, 920-928.
https://doi.org/10.1001/jamacardio.2020.1567
[13]  Chen, L., Zheng, S.Y., Yang, C.Q., et al. (2019) miR-155-5p Inhibits the Proliferation and Migration of VSMCs and HUVECs in Atherosclerosis by Targeting AKT1. European Review for Medical and Pharmacological Sciences, 23, 2223-2233.
[14]  Laughner, E., Taghavi, P., Chiles, K., Mahon, P.C. and Semenza, G.L. (2001) HER2 (neu) Signaling Increases the Rate of Hypoxia-Inducible Factor 1α (HIF-1α) Synthesis: Novel Mechanism for HIF-1-Mediated Vascular Endothelial Growth Factor Expression. Molecular and Cellular Biology, 21, 3995-4004.
https://doi.org/10.1128/mcb.21.12.3995-4004.2001
[15]  Zhang, Y., Yang, X., Bian, F., Wu, P., Xing, S., Xu, G., et al. (2014) TNF-α Promotes Early Atherosclerosis by Increasing Transcytosis of LDL across Endothelial Cells: Crosstalk between NF-κB and PPAR-γ. Journal of Molecular and Cellular Cardiology, 72, 85-94.
https://doi.org/10.1016/j.yjmcc.2014.02.012
[16]  惠岗. 环氧合酶2 (COX-2)及相关microRNA在心力衰竭患者血浆中表达水平的研究[D]: [硕士学位论文]. 长春: 吉林大学, 2018.
[17]  林利. COX-2与心血管疾病的关系[J]. 徐州医学院学报, 2004(1): 91-94.
[18]  张文将, 易健, 刘柏炎. 动脉粥样硬化炎症相关信号转导通路的研究进展[J]. 中国医药导报, 2018, 15(27): 30-33, 37.
[19]  Cheng, M., Yang, L., Fan, M., et al. (2019) Proatherogenic Stimuli induce HuR in Atherosclerosis through MAPK/ErK Path-Way. American Journal of Translational Research, 11, 2317-2327.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133