The importance of telomeres as special structures at the ends of chromosomes is gradually gaining prominence. They are composed of short, multi-repeated non-transcribed sequences (TTAGGG) and binding proteins, and their main role is to protect chromosome ends from degradation. Recent studies have shown that the length of telomeres may affect the outcome of COVID-19 infection, and the severity of COVID-19 is associated with shortened or dysfunctional telomeres, which may be an important factor contributing to the deterioration of the patient’s condition. In conjunction with this, COVID-19 patients with longer telomeres tended to have better outcomes compared to those with shorter telomeres. This suggests that telomere length can be used as a potential marker to predict the progress of COVID-19 patients’ recovery, highlighting the potential role of telomeres in the immune system. The involvement of telomeres in the recovery and virological processes of COVID-19 patients demonstrates that telomeres contribute to the maintenance of chromosome stability and promote the normal restoration of cellular functions during the recovery process, thereby improving patient outcomes. This review examines the complex relationship between telomere length and COVID-19 disease. Telomere abnormalities may exacerbate lung injury and fibrosis in COVID-19 patients, while COVID-19 infection accelerates telomere shortening, leading to premature cellular senescence. The aim of this review is to gain a deeper understanding of how telomere length affects disease severity and how COVID-19 in turn affects telomere structure and function. In addition, the impact of COVID-19 on the aging process is explored to provide scientific rationale and insights for the development of targeted therapeutic interventions in the future.
References
[1]
Habas, K., Nganwuchu, C., Shahzad, F., Gopalan, R., Haque, M., Rahman, S., et al. (2020) Resolution of Coronavirus Disease 2019 (Covid-19). Expert Review of Anti-infective Therapy, 18, 1201-1211. https://doi.org/10.1080/14787210.2020.1797487
[2]
Ciotti, M., Benedetti, F., Zella, D., Angeletti, S., Ciccozzi, M. and Bernardini, S. (2021) Sars-Cov-2 Infection and the COVID-19 Pandemic Emergency: The Importance of Diagnostic Methods. Chemotherapy, 66, 17-23. https://doi.org/10.1159/000515343
[3]
Lei, R. and Mohan, C. (2020) Immunological Biomarkers of Covid-19. Critical Reviews in Immunology, 40, 497-512. https://doi.org/10.1615/critrevimmunol.2020035652
[4]
Chen, Y., Klein, S.L., Garibaldi, B.T., Li, H., Wu, C., Osevala, N.M., et al. (2021) Aging in COVID-19: Vulnerability, Immunity and Intervention. Ageing Research Reviews, 65, Article 101205. https://doi.org/10.1016/j.arr.2020.101205
[5]
Haridoss, M., Ayyasamy, L. and Bagepally, B.S. (2023) Is COVID-19 Severity Associated with Telomere Length? A Systematic Review and Meta-Analysis. Virus Genes, 59, 489-498. https://doi.org/10.1007/s11262-023-02010-1
[6]
Froidure, A., Mahieu, M., Hoton, D., Laterre, P., Yombi, J.C., Koenig, S., et al. (2020) Short Telomeres Increase the Risk of Severe Covid-19. Aging, 12, 19911-19922. https://doi.org/10.18632/aging.104097
[7]
Anderson, J.J., Susser, E., Arbeev, K.G., Yashin, A.I., Levy, D., Verhulst, S., et al. (2022) Telomere-Length Dependent T-Cell Clonal Expansion: A Model Linking Ageing to COVID-19 T-Cell Lymphopenia and Mortality. EBioMedicine, 78, Article 103978. https://doi.org/10.1016/j.ebiom.2022.103978
[8]
Aviv, A. (2020) Telomeres and Covid-19. The FASEB Journal, 34, 7247-7252. https://doi.org/10.1096/fj.202001025
[9]
Rhodes, D. and Giraldo, R. (1995) Telomere Structure and Function. Current Opinion in Structural Biology, 5, 311-322. https://doi.org/10.1016/0959-440x(95)80092-1
[10]
Oeseburg, H., de Boer, R.A., van Gilst, W.H. and van der Harst, P. (2009) Telomere Biology in Healthy Aging and Disease. European Journal of Physiology, 459, 259-268. https://doi.org/10.1007/s00424-009-0728-1
[11]
Hug, N. and Lingner, J. (2006) Telomere Length Homeostasis. Chromosoma, 115, 413-425. https://doi.org/10.1007/s00412-006-0067-3
[12]
Morgan, R.G., Donato, A.J. and Walker, A.E. (2018) Telomere Uncapping and Vascular Aging. American Journal of Physiology-Heart and Circulatory Physiology, 315, H1-H5. https://doi.org/10.1152/ajpheart.00008.2018
[13]
Rhodes, D., Fairall, L., Simonsson, T., Court, R. and Chapman, L. (2002) Telomere Architecture. EMBO Reports, 3, 1139-1145. https://doi.org/10.1093/embo-reports/kvf246
[14]
Van Ly, D., Low, R.R.J., Frölich, S., Bartolec, T.K., Kafer, G.R., Pickett, H.A., et al. (2018) Telomere Loop Dynamics in Chromosome End Protection. Molecular Cell, 71, 510-525.e6. https://doi.org/10.1016/j.molcel.2018.06.025
[15]
dos Santos, G.A., Pimenta, R., Viana, N.I., Guimarães, V.R., Romão, P., Candido, P., et al. (2021) Shorter Leukocyte Telomere Length Is Associated with Severity of COVID-19 Infection. Biochemistry and Biophysics Reports, 27, Article 101056. https://doi.org/10.1016/j.bbrep.2021.101056
[16]
Lin, J. and Epel, E. (2022) Stress and Telomere Shortening: Insights from Cellular Mechanisms. Ageing Research Reviews, 73, Article 101507. https://doi.org/10.1016/j.arr.2021.101507
[17]
Welendorf, C., Nicoletti, C.F., Pinhel, M.A.D.S., Noronha, N.Y., de Paula, B.M.F. and Nonino, C.B. (2019) Obesity, Weight Loss, and Influence on Telomere Length: New Insights for Personalized Nutrition. Nutrition, 66, 115-121. https://doi.org/10.1016/j.nut.2019.05.002
[18]
Córdova-Oriz, I., Chico-Sordo, L. and Varela, E. (2022) Telomeres, Aging and Reproduction. Current Opinion in Obstetrics & Gynecology, 34, 151-158. https://doi.org/10.1097/gco.0000000000000779
[19]
Liu, J., Wang, L., Wang, Z. and Liu, J. (2019) Roles of Telomere Biology in Cell Senescence, Replicative and Chronological Ageing. Cells, 8, Article 54. https://doi.org/10.3390/cells8010054
[20]
de Lange, T. (2009) How Telomeres Solve the End-Protection Problem. Science, 326, 948-952. https://doi.org/10.1126/science.1170633
[21]
Palm, W. and de Lange, T. (2008) How Shelterin Protects Mammalian Telomeres. Annual Review of Genetics, 42, 301-334. https://doi.org/10.1146/annurev.genet.41.110306.130350
[22]
Armanios, M. and Blackburn, E.H. (2012) The Telomere Syndromes. Nature Reviews Genetics, 13, 693-704. https://doi.org/10.1038/nrg3246
[23]
López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. and Kroemer, G. (2013) The Hallmarks of Aging. Cell, 153, 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
[24]
Arsenis, N.C., You, T., Ogawa, E.F., Tinsley, G.M. and Zuo, L. (2017) Physical Activity and Telomere Length: Impact of Aging and Potential Mechanisms of Action. Oncotarget, 8, 45008-45019. https://doi.org/10.18632/oncotarget.16726
[25]
Schreglmann, S.R., Goncalves, T., Grant-Peters, M., Kia, D.A., Soreq, L., Ryten, M., et al. (2023) Age-Related Telomere Attrition in the Human Putamen. Aging Cell, 22, e13861. https://doi.org/10.1111/acel.13861
[26]
Engin, A.B. and Engin, A. (2021) The Connection between Cell Fate and Telomere. In: Advances in Experimental Medicine and Biology, Springer, 71-100. https://doi.org/10.1007/978-3-030-49844-3_3
[27]
Alder, J.K. and Armanios, M. (2022) Telomere-Mediated Lung Disease. Physiological Reviews, 102, 1703-1720. https://doi.org/10.1152/physrev.00046.2021
[28]
Ibironke, O., Carranza, C., Sarkar, S., Torres, M., Choi, H.T., Nwoko, J., et al. (2019) Urban Air Pollution Particulates Suppress Human T-Cell Responses to Mycobacterium Tuberculosis. International Journal of Environmental Research and Public Health, 16, Article 4112. https://doi.org/10.3390/ijerph16214112
[29]
Mikuła-Pietrasik, J., Niklas, A., Uruski, P., Tykarski, A. and Książek, K. (2019) Mechanisms and Significance of Therapy-Induced and Spontaneous Senescence of Cancer Cells. Cellular and Molecular Life Sciences, 77, 213-229. https://doi.org/10.1007/s00018-019-03261-8
[30]
Chandeck, C. and Mooi, W.J. (2010) Oncogene-Induced Cellular Senescence. Advances in Anatomic Pathology, 17, 42-48. https://doi.org/10.1097/pap.0b013e3181c66f4e
[31]
Ruiz, A., Flores-Gonzalez, J., Buendia-Roldan, I. and Chavez-Galan, L. (2021) Telomere Shortening and Its Association with Cell Dysfunction in Lung Diseases. International Journal of Molecular Sciences, 23, Article 425. https://doi.org/10.3390/ijms23010425
[32]
Chow, R.D., Majety, M. and Chen, S. (2021) The Aging Transcriptome and Cellular Landscape of the Human Lung in Relation to Sars-Cov-2. Nature Communications, 12, Article No. 4. https://doi.org/10.1038/s41467-020-20323-9
[33]
Li, T., Luo, Z., Lin, S., Li, C., Dai, S., Wang, H., et al. (2020) MiR-185 Targets POT1 to Induce Telomere Dysfunction and Cellular Senescence. Aging, 12, 14791-14807. https://doi.org/10.18632/aging.103541
[34]
V’kovski, P., Kratzel, A., Steiner, S., Stalder, H. and Thiel, V. (2020) Coronavirus Biology and Replication: Implications for Sars-Cov-2. Nature Reviews Microbiology, 19, 155-170. https://doi.org/10.1038/s41579-020-00468-6
[35]
Trougakos, I.P., Stamatelopoulos, K., Terpos, E., Tsitsilonis, O.E., Aivalioti, E., Paraskevis, D., et al. (2021) Insights to Sars-Cov-2 Life Cycle, Pathophysiology, and Rationalized Treatments That Target COVID-19 Clinical Complications. Journal of Biomedical Science, 28, Article No. 9. https://doi.org/10.1186/s12929-020-00703-5
[36]
Majumder, J. and Minko, T. (2021) Recent Developments on Therapeutic and Diagnostic Approaches for Covid-19. The AAPS Journal, 23, Article No. 14. https://doi.org/10.1208/s12248-020-00532-2
[37]
Khailany, R.A., Safdar, M. and Ozaslan, M. (2020) Genomic Characterization of a Novel Sars-Cov-2. Gene Reports, 19, Article 100682. https://doi.org/10.1016/j.genrep.2020.100682
[38]
Scialo, F., Daniele, A., Amato, F., Pastore, L., Matera, M.G., Cazzola, M., et al. (2020) ACE2: The Major Cell Entry Receptor for Sars-Cov-2. Lung, 198, 867-877. https://doi.org/10.1007/s00408-020-00408-4
[39]
Jin, R., Niu, C., Wu, F., Zhou, S., Han, T., Zhang, Z., et al. (2022) DNA Damage Contributes to Age-Associated Differences in Sars-Cov-2 Infection. Aging Cell, 21, e13729. https://doi.org/10.1111/acel.13729
[40]
Badaras, I. and Laučytė-Cibulskienė, A. (2022) Vascular Aging and Covid-19. Angiology, 74, 308-316. https://doi.org/10.1177/00033197221121007
[41]
Lin, M., Stewart, M.T., Zefi, S., Mateti, K.V., Gauthier, A., Sharma, B., et al. (2022) Dual Effects of Supplemental Oxygen on Pulmonary Infection, Inflammatory Lung Injury, and Neuromodulation in Aging and Covid-19. Free Radical Biology and Medicine, 190, 247-263. https://doi.org/10.1016/j.freeradbiomed.2022.08.004
[42]
Lekva, T., Ueland, T., Halvorsen, B., Murphy, S.L., Dyrhol-Riise, A.M., Tveita, A., et al. (2022) Markers of Cellular Senescence Is Associated with Persistent Pulmonary Pathology after COVID-19 Infection. Infectious Diseases, 54, 918-923. https://doi.org/10.1080/23744235.2022.2113135
[43]
Yang, G., Cao, J., Qin, J., Mei, X., Deng, S., Xia, Y., et al. (2024) Initial COVID-19 Severity Influenced by Sars-Cov-2-Specific T Cells Imprints T-Cell Memory and Inversely Affects Reinfection. Signal Transduction and Targeted Therapy, 9, Article No. 141. https://doi.org/10.1038/s41392-024-01867-4
[44]
Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., et al. (2016) Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology, 24, 490-502. https://doi.org/10.1016/j.tim.2016.03.003
[45]
Umakanthan, S., et al. (2020) Origin, Transmission, Diagnosis and Management of Corona-Virus Disease 2019 (COVID-19). Postgraduate Medical Journal, 96, 753-758.
[46]
Hernandez Acosta, R.A., Esquer Garrigos, Z., Marcelin, J.R. and Vijayvargiya, P. (2022) COVID-19 Pathogenesis and Clinical Manifestations. Infectious Disease Clinics of North America, 36, 231-249. https://doi.org/10.1016/j.idc.2022.01.003
[47]
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., et al. (2020) Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. The Lancet, 395, 507-513. https://doi.org/10.1016/s0140-6736(20)30211-7
[48]
Li, S., Jiang, L., Li, X., Lin, F., Wang, Y., Li, B., et al. (2020) Clinical and Pathological Investigation of Patients with Severe Covid-19. JCI Insight, 5, e138070. https://doi.org/10.1172/jci.insight.138070
[49]
Pérez-López, F.R., Fernández-Alonso, A.M., Ulloque-Badaracco, J.R., Benites-Zapata, V.A. and Varikasuvu, S.R. (2024) Telomere Length in Subjects with and without Sars-Cov-2 Infection: A Systematic Review and Meta-Analysis. Revista da AssociaçãoMédica Brasileira, 70, e20240387. https://doi.org/10.1590/1806-9282.20240387
[50]
Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., et al. (2020) Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (Covid-19). Frontiers in Immunology, 11, Article 827. https://doi.org/10.3389/fimmu.2020.00827
[51]
Wik, J.A. and Skålhegg, B.S. (2022) T Cell Metabolism in Infection. Frontiers in Immunology, 13, Article 840610. https://doi.org/10.3389/fimmu.2022.840610
[52]
Bertoletti, A., Le Bert, N. and Tan, A.T. (2022) Sars-Cov-2-specific T Cells in the Changing Landscape of the COVID-19 Pandemic. Immunity, 55, 1764-1778. https://doi.org/10.1016/j.immuni.2022.08.008
[53]
Salimi, S. and Hamlyn, J.M. (2020) COVID-19 and Crosstalk with the Hallmarks of Aging. The Journals of Gerontology: Series A, 75, e34-e41. https://doi.org/10.1093/gerona/glaa149
[54]
Reeves, J., Kooner, J.S. and Zhang, W. (2022) Accelerated Ageing Is Associated with Increased COVID-19 Severity and Differences across Ethnic Groups May Exist. Frontiers in Public Health, 10, Article 1034227. https://doi.org/10.3389/fpubh.2022.1034227
[55]
Sanchez-Vazquez, R., Guío-Carrión, A., Zapatero-Gaviria, A., Martínez, P. and Blasco, M.A. (2021) Shorter Telomere Lengths in Patients with Severe COVID-19 Disease. Aging, 13, 1-15. https://doi.org/10.18632/aging.202463
[56]
Xu, W., Zhang, F., Shi, Y., Chen, Y., Shi, B. and Yu, G. (2022) Causal Association of Epigenetic Aging and COVID-19 Severity and Susceptibility: A Bidirectional Mendelian Randomization Study. Frontiers in Medicine, 9, Article 989950. https://doi.org/10.3389/fmed.2022.989950
[57]
Benetos, A., Lai, T., Toupance, S., Labat, C., Verhulst, S., Gautier, S., et al. (2021) The Nexus between Telomere Length and Lymphocyte Count in Seniors Hospitalized with Covid-19. The Journals of Gerontology: Series A, 76, e97-e101. https://doi.org/10.1093/gerona/glab026
[58]
Aviv, A. (2022) The Bullwhip Effect, T-Cell Telomeres, and Sars-Cov-2. The Lancet Healthy Longevity, 3, e715-e721. https://doi.org/10.1016/s2666-7568(22)00190-8
[59]
Kraft, B.D., Verhulst, S., Lai, T., Sullenger, B.A., Wang, Y., Rountree, W., et al. (2024) T-Cell Count and T-Cell Telomere Length in Patients with Severe Covid-19. Frontiers in Immunology, 15, Article 1356638. https://doi.org/10.3389/fimmu.2024.1356638
[60]
Huang, D., Lin, S., He, J., Wang, Q. and Zhan, Y. (2022) Association between COVID-19 and Telomere Length: A Bidirectional Mendelian Randomization Study. Journal of Medical Virology, 94, 5345-5353. https://doi.org/10.1002/jmv.28008
[61]
Tan, L., Wang, Q., Zhang, D., Ding, J., Huang, Q., Tang, Y., et al. (2020) Lymphopenia Predicts Disease Severity of COVID-19: A Descriptive and Predictive Study. Signal Transduction and Targeted Therapy, 5, Article No. 33. https://doi.org/10.1038/s41392-020-0148-4
[62]
Valdiani, A. and Ofoghi, H. (2023) Enzymatic Approaches against Sars-Cov-2 Infection with an Emphasis on the Telomere-Associated Enzymes. Biotechnology Letters, 45, 333-345. https://doi.org/10.1007/s10529-023-03352-4
[63]
Schmitt, C.A., Tchkonia, T., Niedernhofer, L.J., Robbins, P.D., Kirkland, J.L. and Lee, S. (2022) COVID-19 and Cellular Senescence. Nature Reviews Immunology, 23, 251-263. https://doi.org/10.1038/s41577-022-00785-2
[64]
Lee, S., Yu, Y., Trimpert, J., Benthani, F., Mairhofer, M., Richter-Pechanska, P., et al. (2021) Virus-Induced Senescence Is a Driver and Therapeutic Target in Covid-19. Nature, 599, 283-289. https://doi.org/10.1038/s41586-021-03995-1
[65]
Gallo Marin, B., Aghagoli, G., Lavine, K., Yang, L., Siff, E.J., Chiang, S.S., et al. (2020) Predictors of Covid-19 Severity: A Literature Review. Reviews in Medical Virology, 31, 1-10. https://doi.org/10.1002/rmv.2146
[66]
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020) Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet, 395, 497-506. https://doi.org/10.1016/s0140-6736(20)30183-5
[67]
Coppé, J., Patil, C.K., Rodier, F., Sun, Y., Muñoz, D.P., Goldstein, J., et al. (2008) Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the P53 Tumor Suppressor. PLOS Biology, 6, e301. https://doi.org/10.1371/journal.pbio.0060301
[68]
Vanderbeke, L., Van Mol, P., Van Herck, Y., De Smet, F., Humblet-Baron, S., Martinod, K., et al. (2021) Monocyte-Driven Atypical Cytokine Storm and Aberrant Neutrophil Activation as Key Mediators of COVID-19 Disease Severity. Nature Communications, 12, Article No. 4117. https://doi.org/10.1038/s41467-021-24360-w
[69]
Roussel, M., Ferrell, P.B., Greenplate, A.R., Lhomme, F., Le Gallou, S., Diggins, K.E., et al. (2017) Mass Cytometry Deep Phenotyping of Human Mononuclear Phagocytes and Myeloid-Derived Suppressor Cells from Human Blood and Bone Marrow. Journal of Leukocyte Biology, 102, 437-447. https://doi.org/10.1189/jlb.5ma1116-457r
[70]
Chua, R.L., Lukassen, S., Trump, S., Hennig, B.P., Wendisch, D., Pott, F., et al. (2020) COVID-19 Severity Correlates with Airway Epithelium–Immune Cell Interactions Identified by Single-Cell Analysis. Nature Biotechnology, 38, 970-979. https://doi.org/10.1038/s41587-020-0602-4
[71]
Desai, N., Neyaz, A., Szabolcs, A., Shih, A.R., Chen, J.H., Thapar, V., et al. (2020) Temporal and Spatial Heterogeneity of Host Response to Sars-Cov-2 Pulmonary Infection. Nature Communications, 11, Article No 6319. https://doi.org/10.1038/s41467-020-20139-7
[72]
Victor, J., Deutsch, J., Whitaker, A., Lamkin, E.N., March, A., Zhou, P., et al. (2021) SARS-CoV-2 Triggers DNA Damage Response in Vero E6 Cells. Biochemical and Biophysical Research Communications, 579, 141-145. https://doi.org/10.1016/j.bbrc.2021.09.024
[73]
Teixeira, M.Z. (2021) Telomere Length: Biological Marker of Cellular Vitality, Aging, and Health-Disease Process. Revista da AssociaçãoMédica Brasileira, 67, 173-177. https://doi.org/10.1590/1806-9282.67.02.20200655
[74]
Mahmoodpoor, A., Sanaie, S., Roudbari, F., Sabzevari, T., Sohrabifar, N. and Kazeminasab, S. (2022) Understanding the Role of Telomere Attrition and Epigenetic Signatures in COVID-19 Severity. Gene, 811, Article 146069. https://doi.org/10.1016/j.gene.2021.146069
[75]
Wang, Q., Codd, V., Raisi-Estabragh, Z., Musicha, C., Bountziouka, V., Kaptoge, S., et al. (2021) Shorter Leukocyte Telomere Length Is Associated with Adverse COVID-19 Outcomes: A Cohort Study in UK Biobank. EBioMedicine, 70, Article 103485. https://doi.org/10.1016/j.ebiom.2021.103485
[76]
Mahmoodpoor, A., Sanaie, S., Eskandari, M., Behrouzi, N., Taghizadeh, M., Roudbari, F., et al. (2023) Association between Leukocyte Telomere Length and COVID-19 Severity. Egyptian Journal of Medical Human Genetics, 24, Article No. 37. https://doi.org/10.1186/s43042-023-00415-z
[77]
Dodig, S., Čepelak, I. and Pavić, I. (2019) Hallmarks of Senescence and Aging. Biochemia Medica, 29, 483-497. https://doi.org/10.11613/bm.2019.030501
[78]
Aviv, A. (2021) Short Telomeres and Severe COVID-19: The Connection Conundrum. EBioMedicine, 70, Article 103513. https://doi.org/10.1016/j.ebiom.2021.103513
[79]
McGroder, C.F., Zhang, D., Choudhury, M.A., Salvatore, M.M., D’Souza, B.M., Hoffman, E.A., et al. (2021) Pulmonary Fibrosis 4 Months after COVID-19 Is Associated with Severity of Illness and Blood Leucocyte Telomere Length. Thorax, 76, 1242-1245. https://doi.org/10.1136/thoraxjnl-2021-217031
[80]
Humaira Amanullah, F., Alam, T., El Hajj, N. and Bejaoui, Y. (2024) The Impact of COVID-19 on “Biological Aging”. Frontiers in Immunology, 15, Article 1399676. https://doi.org/10.3389/fimmu.2024.1399676
[81]
Papanikolaou, C., Rapti, V., Stellas, D., Stefanou, D., Syrigos, K., Pavlakis, G., et al. (2022) Delineating the Sars-Cov-2 Induced Interplay between the Host Immune System and the DNA Damage Response Network. Vaccines, 10, Article 1764. https://doi.org/10.3390/vaccines10101764
[82]
Chico-Sordo, L., Polonio, A.M., Córdova-Oriz, I., Medrano, M., Herraiz, S., Bronet, F., et al. (2022) Telomeres and Oocyte Maturation Rate Are Not Reduced by COVID-19 Except in Severe Cases. Reproduction, 164, 259-267. https://doi.org/10.1530/rep-22-0243
[83]
Orumaa, K. and Dunne, M.R. (2021) The Role of Unconventional T Cells in Covid-19. Irish Journal of Medical Science, 191, 519-528. https://doi.org/10.1007/s11845-021-02653-9
[84]
Ramphul, K., Ramphul, Y., Park, Y., Lohana, P., Kaur Dhillon, B. and Sombans, S. (2021) A Comprehensive Review and Update on Severe Acute Respiratory Syndrome Coronavirus 2 (Sars-Cov-2) and Coronavirus Disease 2019 (COVID-19): What Do We Know Now in 2021? Archives of Medical Science—Atherosclerotic Diseases, 6, 5-13. https://doi.org/10.5114/amsad.2021.105065
[85]
Sepe, S., Rossiello, F., Cancila, V., Iannelli, F., Matti, V., Cicio, G., et al. (2021) DNA Damage Response at Telomeres Boosts the Transcription of Sars-Cov-2 Receptor ACE2 during Aging. EMBO Reports, 23, e53658. https://doi.org/10.15252/embr.202153658
[86]
Dix, E. and Roy, K. (2022) COVID-19. Psychiatric Clinics of North America, 45, 625-637. https://doi.org/10.1016/j.psc.2022.07.009
[87]
Asghari, F., Asghary, A., Majidi Zolbanin, N., Faraji, F. and Jafari, R. (2023) Immuno-Senescence and Inflammaging in COVID-19. Viral Immunology, 36, 579-592. https://doi.org/10.1089/vim.2023.0045
[88]
Cao, X., Li, W., Wang, T., Ran, D., Davalos, V., Planas-Serra, L., et al. (2022) Accelerated Biological Aging in COVID-19 Patients. Nature Communications, 13, Article No. 2135. https://doi.org/10.1038/s41467-022-29801-8
[89]
Lu, A.T., Quach, A., Wilson, J.G., Reiner, A.P., Aviv, A., Raj, K., et al. (2019) DNA Methylation Grimage Strongly Predicts Lifespan and Healthspan. Aging, 11, 303-327. https://doi.org/10.18632/aging.101684
[90]
Mongelli, A., Barbi, V., Gottardi Zamperla, M., Atlante, S., Forleo, L., Nesta, M., et al. (2021) Evidence for Biological Age Acceleration and Telomere Shortening in COVID-19 Survivors. International Journal of Molecular Sciences, 22, 6151. https://doi.org/10.3390/ijms22116151
[91]
Attia, M.H. (2022) A Cautionary Note on Altered Pace of Aging in the COVID-19 Era. Forensic Science International: Genetics, 59, Article 102724. https://doi.org/10.1016/j.fsigen.2022.102724
[92]
Krasnienkov, D.S., Gorodna, O.V., Kaminska, T.M., Podolskiy, V.V., Podolskiy, V.V., Nechyporenko, M.V., et al. (2022) Analysis of Relative Average Length of Telomeres in Leukocytes of Women with Covid-19. Cytology and Genetics, 56, 526-529. https://doi.org/10.3103/s0095452722060056
[93]
Tyagi, M., Imam, N., Verma, K. and Patel, A.K. (2016) Chromatin Remodelers: We Are the Drivers! Nucleus, 7, 388-404. https://doi.org/10.1080/19491034.2016.1211217
[94]
Retuerto, M., Lledó, A., Fernandez-Varas, B., Guerrero-López, R., Usategui, A., Lalueza, A., et al. (2022) Shorter Telomere Length Is Associated with COVID-19 Hospitalization and with Persistence of Radiographic Lung Abnormalities. Immunity & Ageing, 19, Article No. 38. https://doi.org/10.1186/s12979-022-00294-9
[95]
Virseda-Berdices, A., Concostrina-Martinez, L., Martínez-González, O., Blancas, R., Resino, S., Ryan, P., et al. (2022) Relative Telomere Length Impact on Mortality of COVID-19: Sex Differences. Journal of Medical Virology, 95, e28368. https://doi.org/10.1002/jmv.28368