|
高速列车头车气动噪声仿真及控制研究
|
Abstract:
随着高速列车运行速度的提高,高速列车运行产生的气动噪声问题表现得更加突出。列车头车作为关键气动噪声源,通过对其采用降噪措施可以有效地降低车内外噪声。文章建立了高速列车外流场仿真模型,采用分离涡(DES)模拟获得头车区域表面声源,建立头车声学仿真模型,探究了列车头车排障器区域的气动噪声源特性。通过优化排障器的外形来降低该区域的气动噪声,数值仿真结果表明优化排障器外形可以有效地降低该区域产生的气动噪声。在30 Hz~3000 Hz范围内,排障器区域的气动噪声得到有效降低,噪声总值降低7.4 dB(A)。
With the increase in high-speed train operation speed, the aerodynamic noise problem generated by high-speed train operation has become more prominent. As a key aerodynamic noise source, the head car of the train can effectively reduce the noise inside and outside the train by adopting noise reduction measures. This paper establishes a simulation model of the external flow field of a high-speed train, uses the Detached Eddy Simulation (DES) to obtain the surface sound source of the head car area, establishes an acoustic simulation model of the head car, and explores the aerodynamic noise source characteristics of the head car’s cowcatcher region. The aerodynamic noise in the region is reduced by optimizing the shape of the cowcatcher, and the numerical simulation results show that optimizing the shape of the cowcatcher can effectively reduce the aerodynamic noise generated in the region. In the range of 30 Hz~3000 Hz, the aerodynamic noise in the cowcatcher region is effectively reduced, and the total noise value is reduced by 7.4 dB(A).
[1] | 朱剑月, 张清, 徐凡斐, 刘林芽, 圣小珍. 高速列车气动噪声研究综述[J]. 交通运输工程学报, 2021, 21(3): 39-56. |
[2] | Zhang, J., Xiao, X., Sheng, X. and Li, Z. (2019) Sound Source Localisation for a High-Speed Train and Its Transfer Path to Interior Noise. Chinese Journal of Mechanical Engineering, 32, Article No. 59. https://doi.org/10.1186/s10033-019-0375-1 |
[3] | Yan, H., Xie, S., Jing, K. and Feng, Z. (2022) A Review of Recent Research into the Causes and Control of Noise during High-Speed Train Movement. Applied Sciences, 12, Article 7508. https://doi.org/10.3390/app12157508 |
[4] | 王友彪, 李红梅, 宣言, 李志强, 周学影. 高速列车外流场及气动噪声特性数值分析[J]. 铁路节能环保与安全卫生, 2023, 13(4): 5-10. |
[5] | 丁世峰. 高速列车气动噪声数值计算研究[D]: [硕士学位论文]. 大连: 大连交通大学, 2023. |
[6] | 杨妍, 张捷, 何宾, 范静, 王德威, 肖新标. 基于试验测试的桥梁与路堤区段高速列车车外噪声特性分析[J]. 机械工程学报, 2019, 55(20): 188-197. |
[7] | 王东镇, 葛剑敏. 高速列车运行时不同转向架区噪声特性[J]. 交通运输工程学报, 2020, 20(4): 174-183. |
[8] | 贾尚帅, 张文敏, 韩铁礼, 彭垒. 高速动车组气动噪声试验与仿真分析[J]. 应用声学, 2021, 40(4): 611-618. |
[9] | 高阳, 王毅刚, 王金田, 沈哲, 杨志刚. 声学风洞中的高速列车模型气动噪声试验研究[J]. 声学技术, 2013, 32(6): 506-510. |
[10] | 柳润东, 李志强, 伍向阳, 潘永琛. 高速列车关键区域流场结构及气动噪声特性仿真分析[J]. 中国铁路, 2024(6): 1-6. |
[11] | 季玲, 刘海东, 陈秉智. 高速列车头型的减阻降噪多目标优化设计[J]. 大连交通大学学报, 2022, 43(5): 35-40. |
[12] | 朱剑月, 程冠达, 陈力, 高阳, 张清. 高速列车排障器底部后端扰流对转向架区域流场与气动噪声特性的影响[J]. 中国铁道科学, 2022, 43(6): 119-130. |
[13] | 陈羽, 柳壹明, 毛懋, 李启良, 王毅刚, 杨志刚. 高速列车底部结构参数对气动噪声影响规律[J]. 西南交通大学学报, 2023, 58(5): 1171-1179. |