全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

5083合金热加工行为及加工图研究
Investigation of Thermal Processing Behavior and Processing Maps of 5083 Alloy

DOI: 10.12677/ms.2024.1412183, PP. 1689-1697

Keywords: 5083铝合金,热加工行为,微观组织,加工图
5083 Aluminum Alloy
, Hot Workability, Microstructure, Processing Map

Full-Text   Cite this paper   Add to My Lib

Abstract:

为揭示高温流变参如温度、速率以及应变量等对5083铝合金微观组织影响规律,优化热加工工艺,本文采用Gleeble-3810热模试验机,系统研究了该合金在应变温度280℃~520℃、应变速率0.01 s?1~10 s?1和总应变量为0.9的条件下材料的微观组织演变规律,基于动态材料模型(Dynamic materials model, DMM)建立了该合金的热加工图。结果表明:合金在低温高速及高温高速条件下组织容易出现局部流变、微观裂纹等失稳现象,尤其在变形温度为280℃~335℃、变形速率为6~10 s?1条件下,当应变达到0.9时,失稳风险较大,而在高温低速下功率耗散系数大,失稳风险低,有利于材料加工。所构建的热加工图能够准确预测5083铝合金的高温流变组织演变规律。
To elucidate the influence of high-temperature rheological parameters namely temperature, strain rate, and strain on the microstructure evolution of the 5083 aluminum alloy and to optimize the thermal processing conditions, the evolution of the microstructure under conditions ranging from 280?C to 520?C, with strain rates between 0.01 s1 and 10 s1 and a total strain of 0.9, was systematically established using a Gleeble-3810 thermal simulator. The hot processing of the alloy was framed within the context of the dynamic materials model (DMM). The results indicate that the alloy’s structure is susceptible to local rheology and the formation of microscopic cracks, particularly under low-temperature, high-speed, and high-temperature conditions. This instability is especially pronounced when the deformation temperature is between 280?C and 335?C and the deformation rate is between 6 and 10 s1; at a strain of 0.9, the risk of instability increases significantly. Conversely, at elevated temperatures and lower speeds, the power dissipation coefficient is substantial, resulting in a reduced risk of instability, which is advantageous for material processing. The developed thermal processing map can accurately predict the microstructure evolution during hot processing of the 5083 aluminum alloy.

References

[1]  张新明, 邓运来. 新型合金材料——铝合金[M]. 北京: 中国铁道出版社, 2018.
[2]  罗芬, 吴锡坤. 铝型材加工适用技术手册[M]. 长沙: 中南大学出版社, 2006: 447-453.
[3]  Nkoua, C., Josse, C., Proietti, A., Basseguy, R. and Blanc, C. (2023) Corrosion Behaviour of the Microbially Modified Surface of 5083 Aluminium Alloy. Corrosion Science, 210, Article ID: 110812.
https://doi.org/10.1016/j.corsci.2022.110812
[4]  Liu, S., Wang, X., Tao, Y., Han, X. and Cui, C. (2019) Enhanced Corrosion Resistance of 5083 Aluminum Alloy by Refining with Nano-CeB6/Al Inoculant. Applied Surface Science, 484, 403-408.
https://doi.org/10.1016/j.apsusc.2019.03.283
[5]  Karimi, S., Fakhar, N., Faraji, M. and Fereshteh-Saniee, F. (2024) Simultaneous Improvement of Mechanical Strength and Corrosion Resistance in Aluminum Alloy 5083 via Severe Plastic Deformation. Materials Chemistry and Physics, 313, Article ID: 128755.
https://doi.org/10.1016/j.matchemphys.2023.128755
[6]  肖政兵, 黄元春, 刘宇. 基于微观机理的电磁铸造35CrMo钢的高温流变本构方程[J]. 金属热处理, 2017, 42(1): 1-8.
[7]  Prasad, Y.V.R.K., Gegel, H.L., Doraivelu, S.M., Malas, J.C., Morgan, J.T., Lark, K.A., et al. (1984) Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242. Metallurgical Transactions A, 15, 1883-1892.
https://doi.org/10.1007/bf02664902
[8]  Candea, S., Veres, C. and Gabor, M.R. (2023) Effects of Using Process Mapping in Automotive Industry: A Case Study. Acta Technica Napocensis Series-Applied Mathematics Mechanics and Engineering, 66, 229-240.
[9]  Yang, S., Shen, J., Zhang, Y., Li, Z., Li, X., Huang, S., et al. (2017) Processing Maps and Microstructural Evolution of Al–cu–li Alloy during Hot Deformation. Rare Metals, 38, 1136-1143.
https://doi.org/10.1007/s12598-016-0851-z
[10]  Kai, X., Chen, C., Sun, X., Wang, C. and Zhao, Y. (2016) Hot Deformation Behavior and Optimization of Processing Parameters of a Typical High-Strength Al-Mg-Si Alloy. Materials & Design, 90, 1151-1158.
https://doi.org/10.1016/j.matdes.2015.11.064
[11]  Zhang, Y., Chai, Z., Volinsky, A.A., Tian, B., Sun, H., Liu, P., et al. (2016) Processing Maps for the Cu-Cr-Zr-Y Alloy Hot Deformation Behavior. Materials Science and Engineering: A, 662, 320-329.
https://doi.org/10.1016/j.msea.2016.03.033
[12]  Xiao, Z., Huang, Y. and Liu, Y. (2016) Plastic Deformation Behavior and Processing Maps of 35crmo Steel. Journal of Materials Engineering and Performance, 25, 1219-1227.
https://doi.org/10.1007/s11665-016-1933-7
[13]  Qu, F.S., Reng, Z.Y., Ma, R.R., Wang, Z.H. and Chen, D.M. (2016) The Research on the Constitutive Modeling and Hot Working Characteristics of As-Cast V-5Cr-5Ti Alloy during Hot Deformation. Journal of Alloys and Compounds, 663, 552-559.
https://doi.org/10.1016/j.jallcom.2015.12.014
[14]  Yang, Q., Liu, X., Liu, G. and Zhu, G. (2020) Effect of Deformation Heating on the Flow Behavior and Processing Maps of Al-Zn-Mg-Cu Alloy. Materials Transactions, 61, 1414-1420.
https://doi.org/10.2320/matertrans.mt-m2020013
[15]  Zhou, M. and Clode, M.P. (1998) Constitutive Equations for Modelling Flow Softening Due to Dynamic Recovery and Heat Generation during Plastic Deformation. Mechanics of Materials, 27, 63-76.
https://doi.org/10.1016/s0167-6636(97)00035-5
[16]  Raj, R. (1981) Development of a Processing Map for Use in Warm-Forming and Hot-Forming Processes. Metallurgical Transactions A, 12, 1089-1097.
https://doi.org/10.1007/bf02643490

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133