|
Bioprocess 2024
艾纳香BbCOMT基因克隆及生物信息学分析
|
Abstract:
艾纳香是一种多年生草本或亚灌木植物,属于菊科艾纳香属。艾纳香含有挥发油、黄酮类以及苯丙素类等成分。咖啡酸氧甲基转移酶基因(COMT)可催化苯丙素类化合物羟基上氧原子的甲基化,也是参与木质素和褪黑素生物合成的关键基因,在调节植物生长品质和抗逆性中发挥重要作用。本文以艾纳香咖啡酸氧甲基转移酶(BbCOMT)为研究对象,通过PCR获得该基因全长,对该基因进行生物信息学分析。结果显示,BbCOMT基因的完整开放阅读框长1062 bp,共编码353个氨基酸;生物信息学分析结果显示BbCOMT为跨膜蛋白,无信号肽;含有二聚体结构域和AdoMet-MTase保守结构域;且BbCOMT与青蒿聚在同一分支,氨基酸一致度为72.39%。本研究为黔产艾纳香中苯丙素类化合物的合成研究奠定基础,进而提高艾纳香药用价值,同时为进一步分析咖啡酸氧甲基转移酶基因的功能提供分子基础。
Blumea balsamifera is a perennial or subshrub plant belonging to the Asteraceae family of the Blumea genus. Blumea balsamifera contains volatile oil, flavonoids, and phenylpropanoid compounds. Caffeoyl-CoA O-methyltransferase gene (COMT) can catalyze the methylation of hydroxyl group on phenylpropanoid compounds, and it is also a key gene involved in lignin and melatonin biosynthesis. It plays an important role in regulating plant growth quality and resistance to adverse conditions. In this study, BbCOMT gene was taken as the research object, and the gene was cloned by PCR. Bioinformatics analysis was conducted on the gene. The results showed that the complete open reading frame of BbCOMT gene was 1062 bp, and it encoded 353 amino acids. Bioinformatics analysis showed that BbCOMT was a transmembrane protein without a signal peptide, containing a dimerization domain and a conserved AdoMet-MTase domain. BbCOMT was clustered with Artemisia on the same branch, with an amino acid identity of 72.39%. This study lays a foundation for the synthesis of phenylpropanoid compounds in Blumea balsamifera, thereby improving its pharmaceutical value, and it also provides a molecular basis for further analyzing the function of the caffeoyl-CoA O-methyltransferase gene.
[1] | 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1979: 19. |
[2] | 贵州省药品监督管理局. 贵州省中药材、民族药材质量标准[M]. 贵阳: 贵州科技出版社, 2003: 118-119. |
[3] | 国家药典委员会. 中华人民共和国药典(2020年版) [M]. 北京: 中国医药科技出版社, 2020: 90. |
[4] | 范东生, 李玲, 王可可, 等. 艾纳香化学成分及药理活性的研究进展[J]. 中国药房, 2022, 33(10): 1274-1280. |
[5] | Humphreys, J.M., Hemm, M.R. and Chapple, C. (1999) New Routes for Lignin Biosynthesis Defined by Biochemical Characterization of Recombinant Ferulate 5-Hydroxylase, a Multifunctional Cytochrome P450-Dependent Monooxygenase. Proceedings of the National Academy of Sciences, 96, 10045-10050. https://doi.org/10.1073/pnas.96.18.10045 |
[6] | Maury, S., Geoffroy, P. and Legrand, M. (1999) Tobacco O-Methyltransferases Involved in Phenylpropanoid Metabolism. the Different Caffeoyl-Coenzyme A/5-Hydroxyferuloyl-Coenzyme a 3/5-O-Methyltransferase and Caffeic Acid/5-Hydroxyferulic Acid 3/5-O-Methyltransferase Classes Have Distinct Substrate Specificities and Expression Patterns. Plant Physiology, 121, 215-224. https://doi.org/10.1104/pp.121.1.215 |
[7] | Osakabe, K., Tsao, C.C., Li, L., Popko, J.L., Umezawa, T., Carraway, D.T., et al. (1999) Coniferyl Aldehyde 5-Hydroxylation and Methylation Direct Syringyl Lignin Biosynthesis in Angiosperms. Proceedings of the National Academy of Sciences, 96, 8955-8960. https://doi.org/10.1073/pnas.96.16.8955 |
[8] | Chen, F., Yasuda, S. and Fukushima, K. (1999) Evidence for a Novel Biosynthetic Pathway That Regulates the Ratio of Syringyl to Guaiacyl Residues in Lignin in the Differentiating Xylem of Magnolia Kobus DC. Planta, 207, 597-603. https://doi.org/10.1007/s004250050523 |
[9] | Bennett, M.R., Shepherd, S.A., Cronin, V.A. and Micklefield, J. (2017) Recent Advances in Methyltransferase Biocatalysis. Current Opinion in Chemical Biology, 37, 97-106. https://doi.org/10.1016/j.cbpa.2017.01.020 |
[10] | Vanholme, R., De Meester, B., Ralph, J. and Boerjan, W. (2019) Lignin Biosynthesis and Its Integration into Metabolism. Current Opinion in Biotechnology, 56, 230-239. https://doi.org/10.1016/j.copbio.2019.02.018 |
[11] | Bugos, R.C., Chiang, V.L.C. and Campbell, W.H. (1991) cDNA Cloning, Sequence Analysis and Seasonal Expression of Lignin-Bispecific Caffeic Acid/5-Hydroxyferulic Acid O-Methyltransferase of Aspen. Plant Molecular Biology, 17, 1203-1215. https://doi.org/10.1007/bf00028736 |
[12] | 李波, 倪志勇, 王娟, 等. 木质素生物合成关键酶咖啡酸-O-甲基转移酶基因(COMT)的研究进展[J]. 分子植物育种, 2010, 8(1): 117-124. |
[13] | Lapierre, C., Pollet, B., Petit-Conil, M., Toval, G., Romero, J., Pilate, G., et al. (1999) Structural Alterations of Lignins in Transgenic Poplars with Depressed Cinnamyl Alcohol Dehydrogenase or Caffeic Acido-Methyltransferase Activity Have an Opposite Impact on the Efficiency of Industrial Kraft Pulping1. Plant Physiology, 119, 153-164. https://doi.org/10.1104/pp.119.1.153 |
[14] | Pinçon, G., Maury, S., Hoffmann, L., Geoffroy, P., Lapierre, C., Pollet, B., et al. (2001) Repression of O-Methyltransferase Genes in Transgenic Tobacco Affects Lignin Synthesis and Plant Growth. Phytochemistry, 57, 1167-1176. https://doi.org/10.1016/s0031-9422(01)00098-x |
[15] | Guo, D., Chen, F., Inoue, K., Blount, J.W. and Dixon, R.A. (2001) Downregulation of Caffeic Acid 3-O-Methyltransferase and Caffeoyl Coa 3-O-Methyltransferase in Transgenic Alfalfa: Impacts on Lignin Structure and Implications for the Biosynthesis of G and S Lignin. The Plant Cell, 13, 73-88. https://doi.org/10.1105/tpc.13.1.73 |
[16] | Piquemal, J., Chamayou, S., Nadaud, I., Beckert, M., Barrière, Y., Mila, I., et al. (2002) Down-Regulation of Caffeic Acid O-Methyltransferase in Maize Revisited Using a Transgenic Approach. Plant Physiology, 130, 1675-1685. https://doi.org/10.1104/pp.012237 |
[17] | 蒋诗琴, 罗姣, 韦春玲, 等. 五加属植物苯丙素类成分及药理作用研究进展[J]. 湖南中医药大学学报, 2024, 44(7): 1335-1345. |
[18] | 李昌芬, 廖彬彬, 刘宗绪, 等. 来江藤苯丙素类成分及其抗氧化活性研究[J]. 中成药, 2024, 46(8): 2623-2630. |
[19] | 褚洪标, 曾红, 梁生林, 等. 二岐马先蒿苯丙素类活性成分研究[J]. 中草药, 2014, 45(9): 1223-1227. |
[20] | Liu, Y., Wang, A., Naseem, A., Ye, H., Jiang, P., Li, X., et al. (2022) Phenylpropanoids and Triterpenoids from Tripterygium Regelii and Their Anti-Inflammatory Activities. Phytochemistry Letters, 49, 73-78. https://doi.org/10.1016/j.phytol.2022.03.004 |
[21] | 吴思桐. 山茄子中苯丙素类化合物及其抗乙肝病毒活性的研究[D]: [博士学位论文]. 长春: 吉林大学, 2022. |
[22] | Xu, K., Li, C., Li, C., Ma, J., Zang, Y., Ye, F., et al. (2021) Oligomeric Phenylpropanoids Having New Skeletons and Hypoglycemic Activity from Magnolia Officinalis Var. Biloba. Organic Chemistry Frontiers, 8, 4833-4838. https://doi.org/10.1039/d1qo00795e |
[23] | Ye, X., Tian, W., Liu, X., Zhou, M., Zeng, D., Lin, T., et al. (2021) Lignans and Phenylpropanoids from the Roots of Ficus Hirta and Their Cytotoxic Activities. Natural Product Research, 36, 3840-3849. https://doi.org/10.1080/14786419.2021.1892099 |
[24] | Byeon, Y., Lee, H.Y., Lee, K. and Back, K. (2014) Caffeic Acid O-Methyltransferase Is Involved in the Synthesis of Melatonin by Methylating n-Acetylserotonin in Arabidopsis. Journal of Pineal Research, 57, 219-227. https://doi.org/10.1111/jpi.12160 |
[25] | Byeon, Y., Choi, G., Lee, H.Y. and Back, K. (2015) Melatonin Biosynthesis Requiresn-Acetylserotonin Methyltransferase Activity of Caffeic Acido-Methyltransferase in Rice. Journal of Experimental Botany, 66, 6917-6925. https://doi.org/10.1093/jxb/erv396 |
[26] | Lee, H.Y., Byeon, Y., Lee, K., Lee, H. and Back, K. (2014) Cloning of Arabidopsis Serotonin n-Acetyltransferase and Its Role with Caffeic Acid O-Methyltransferase in the Biosynthesis of Melatonin in Vitro Despite Their Different Subcellular Localizations. Journal of Pineal Research, 57, 418-426. https://doi.org/10.1111/jpi.12181 |
[27] | 孙莎莎, 韩亚萍, 闫燕燕, 等. 过表达咖啡酸-O-甲基转移酶基因(COMT1)调控番茄幼苗对干旱胁迫生理响应[J]. 植物生理学报, 2019, 55(8): 1109-1122. |