全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

“双碳”愿景下城市生活垃圾分类问题的量化数学研究
Quantitative Mathematical Research on Urban Domestic Waste Classification under the Carbon Peak and Carbon Neutralization Strategy

DOI: 10.12677/wjf.2025.141002, PP. 16-29

Keywords: 双碳,碳排放,综合评价指标体系,垃圾分类,神经网络
Carbon Peak and Carbon Neutralization Strategy
, Carbon Emission, Comprehensive Evaluation Index System, Refuse Classification, Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文旨在以严谨、理性的态度,对沈阳市近年来垃圾处理情况展开深入分析,通过量化数学研究手段,对垃圾分类进行精确评估。基于国家“双碳”战略背景,本文致力于将所得数据有效整合,并应用于碳排放处理问题的探讨中,以期提出更具针对性的节能减排措施。在研究过程中,本文采用了数学建模、运筹学优化、数据分析以及神经网络等多种工具,对垃圾分类过程中的关键因素进行了全面而深入的量化评估。通过这一方法,本文得以对城市生活垃圾分类问题进行更为细致、系统地剖析,并探索了优化垃圾运输过程中碳足迹的可行性途径,从而为实现“双碳”愿景提供了有力的科学依据和决策支持。为了确保研究的准确性和可靠性,本文还对沈阳市等城市的垃圾清运情况进行了实地调研,并结合线上询问、资料查阅以及大数据爬虫等多种手段,全面掌握了垃圾分类的实施情况及其对碳排放量减少的显著影响。在此基础上,本文构建了一个综合评价指标体系,并运用TOPSIS评价法等多准则决策分析方法,对不同类型垃圾的环保效益进行了精确量化评估。综上所述,本研究成果将为城市生活垃圾分类政策的制定和实施提供更为科学、系统的理论支持,为推进我国垃圾分类事业贡献力量。
This article is dedicated to a rigorous and rational analysis of Shenyang’s recent garbage disposal practices, employing quantitative mathematical methods for an accurate evaluation of garbage classification. In alignment with the national “dual carbon” strategy, this study aims to effectively integrate the gathered data into discussions on carbon emission treatment, with the goal of proposing targeted energy-saving and emission-reducing measures. Throughout the research, the article utilized a variety of tools including mathematical modeling, operations research optimization, data analysis, and neural networks to thoroughly quantify key factors in the garbage classification process. This approach allowed for a detailed and systematic examination of urban domestic waste classification, and explored feasible ways to reduce the carbon footprint in waste transportation, thereby offering a robust scientific foundation and decision-making support for the “dual carbon” vision. To ensure the research’s accuracy and reliability, the article also involved field research on the waste collection and transportation in cities like Shenyang, incorporating various methods such as online surveys, data reviews, and big data crawlers to fully understand the implementation of waste classification and its substantial impact on carbon emission reductions. Building on this, the article established a comprehensive evaluation index system and applied the TOPSIS evaluation method among other multi-criteria decision-making techniques to precisely quantify the environmental benefits of different types of waste. In conclusion, the findings of this study offer more scientific and systematic theoretical support for the development and implementation of urban domestic waste classification policies, thereby contributing to the advancement of waste classification initiatives in China.

References

[1]  林成淼, 陈丽君, 吴洁珍. 生活垃圾分类对固体废弃物和温室气体协同减排的影响研究——以浙江省为例[J]. 环境与可持续发展, 2021, 46(1): 90-94.
[2]  2022中国城市生活垃圾处理碳排放研究报告[J]. 城乡建设, 2023(8): 72-79.
[3]  耿丽伟. 中国城市生活垃圾碳排放及其影响因素研究[D]: [硕士学位论文]. 北京: 北京理工大学, 2015.
[4]  王星星. 城市社区垃圾收运过程的碳减排评价研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2012.
[5]  王建平, 郭尚. BP神经网络预测算法性能的改进策略[J]. 微电子学与计算机, 2007(10): 144-145, 149.
[6]  焦淑华, 夏冰, 徐海静, 刘莹. BP神经网络预测的MATLAB实现[J]. 哈尔滨金融高等专科学校学报, 2009(1): 55-56.
[7]  肖静, 邹传平, 郑冬喜. 浅谈BP神经网络预测模型[J]. 科技咨询导报, 2007(2): 9.
[8]  李萍, 曾令可, 税安泽, 金雪莉, 刘艳春, 王慧. 基于MATLAB的BP神经网络预测系统的设计[J]. 计算机应用与软件, 2008, 25(4): 149-150, 184.
[9]  贺嘉妮, 刘意立, 李竺霖, 邱兆文. 生活垃圾分类运输能耗分析[J]. 环境工程, 2021, 39(10): 136-142.
[10]  狄卫民, 王然. 垃圾分类收运模式下车辆路径问题建模与仿真[J]. 计算机应用与软件, 2021, 38(8): 309-314.
[11]  华佳, 柏双友, 瞿立新, 等. 城市生活垃圾低碳管理策略述评[J]. 价值工程, 2014, 33(34): 10-12.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133