全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钡离子掺杂对锂离子电池富镍三元正极材料的改性研究
Research on the Modification of Nickel-Rich Ternary Cathode Materials for Lithium-Ion Batteries through Ba2+ Doping

DOI: 10.12677/ms.2024.1412179, PP. 1655-1661

Keywords: 锂离子电池,三元正极材料,掺杂
Lithium-Ion Batteries
, Ternary Cathode Materials, Doping

Full-Text   Cite this paper   Add to My Lib

Abstract:

锂离子电池以其高能量密度、合理的材料成本和较绿色的环保特性,已经成为电动汽车和电子产品等便携式动力装置的重要能源,但目前常用的镍钴锰三元正极材料(NCM)在电化学性能方面存在一定的缺陷。本文主要研究了Ba2+的掺杂对LiNi0.8Co0.1Mn0.1O2材料性能的影响。采用X射线衍射(XRD)分析了样品的相结构和结晶性,通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)以及X射线能量色散光谱仪(EDS),对样品的形貌和元素组成进行了表征分析。通过电化学性能测试,我们发现Ba2+掺杂能够有效提升三元正极材料的比容量和循环稳定性,为改善三元正极材料提供了新的思路与依据。
Lithium-ion batteries are characterized by their high energy density, reasonable material cost, and environmentally friendly features, and have become important energy sources for portable power devices like electric vehicles and electronics. However, the commonly used nickel-cobalt-manganese (NCM) ternary cathode materials have certain deficiencies in electrochemical performance. This study mainly investigates the effect of Ba2+ doping on the performance of LiNi0.8Co0.1Mn0.1O2 materials. The phase structure and crystallinity of the samples were analyzed using X-ray diffraction (XRD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray energy dispersive spectroscopy (EDS) were employed to characterize the morphology and elemental composition of the samples. Through electrochemical performance testing, we found that Ba2+ doping effectively enhances the specific capacity and cycling stability of the ternary cathode materials, providing new insights and evidence for improving their performance.

References

[1]  Sen, S., Jayappa, R.B., Zhu, H., Forsyth, M. and Bhattacharyya, A.J. (2016) A Single Cation or Anion Dendrimer-Based Liquid Electrolyte. Chemical Science, 7, 3390-3398.
https://doi.org/10.1039/c5sc04584c
[2]  Wu, J., Liu, X., Bi, H., Song, Y., Wang, C., Cao, Q., et al. (2016) Microwave Sintering and In-Situ Transmission Electron Microscopy Heating Study of Li12(Mn0·53Co0.27)O2 with Improved Electrochemical Performance. Journal of Power Sources, 326, 104-111.
https://doi.org/10.1016/j.jpowsour.2016.06.102
[3]  Yang, L., Ren, F., Feng, Q., Xu, G., Li, X., Li, Y., et al. (2018) Effect of Cu Doping on the Structural and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials. Journal of Electronic Materials, 47, 3996-4002.
https://doi.org/10.1007/s11664-018-6284-8
[4]  Hou, Q., Cao, G., Wang, P., Zhao, D., Cui, X., Li, S., et al. (2018) Carbon Coating Nanostructured-LiNi1/3Co1/3Mn1/3O2 Cathode Material Synthesized by Chemical Vapor Deposition Method for High Performance Lithium-Ion Batteries. Journal of Alloys and Compounds, 747, 796-802.
https://doi.org/10.1016/j.jallcom.2018.03.115
[5]  Noh, H., Chen, Z., Yoon, C.S., Lu, J., Amine, K. and Sun, Y. (2013) Cathode Material with Nanorod Structure—An Application for Advanced High-Energy and Safe Lithium Batteries. Chemistry of Materials, 25, 2109-2115.
https://doi.org/10.1021/cm4006772
[6]  Csernica, P.M., Kalirai, S.S., Gent, W.E., Lim, K., Yu, Y., Liu, Y., et al. (2021) Persistent and Partially Mobile Oxygen Vacancies in Li-Rich Layered Oxides. Nature Energy, 6, 642-652.
https://doi.org/10.1038/s41560-021-00832-7
[7]  Xie, H., Du, K., Hu, G., Peng, Z. and Cao, Y. (2016) The Role of Sodium in LiNi0.8Co0.15Al0.05O2 Cathode Material and Its Electrochemical Behaviors. The Journal of Physical Chemistry C, 120, 3235-3241.
https://doi.org/10.1021/acs.jpcc.5b12407
[8]  Han, Y., Lei, Y., Ni, J., Zhang, Y., Geng, Z., Ming, P., et al. (2022) Single‐Crystalline Cathodes for Advanced Li‐Ion Batteries: Progress and Challenges. Small, 18, Article 2107048.
https://doi.org/10.1002/smll.202107048
[9]  Luo, Y., Wei, H., Tang, L., Huang, Y., Wang, Z., He, Z., et al. (2022) Nickel-Rich and Cobalt-Free Layered Oxide Cathode Materials for Lithium Ion Batteries. Energy Storage Materials, 50, 274-307.
https://doi.org/10.1016/j.ensm.2022.05.019
[10]  Feng, Z., Zhang, S., Rajagopalan, R., Huang, X., Ren, Y., Sun, D., et al. (2021) Dual-Element-Modified Single-Crystal LiNi0.6Co0.2Mn0.2O2 as a Highly Stable Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 13, 43039-43050.
https://doi.org/10.1021/acsami.1c10799
[11]  Yin, S., Deng, W., Chen, J., Gao, X., Zou, G., Hou, H., et al. (2021) Fundamental and Solutions of Microcrack in Ni-Rich Layered Oxide Cathode Materials of Lithium-Ion Batteries. Nano Energy, 83, Article 105854.
https://doi.org/10.1016/j.nanoen.2021.105854
[12]  Qing, R., Shi, J., Xiao, D., Zhang, X., Yin, Y., Zhai, Y., et al. (2015) Enhancing the Kinetics of Li‐Rich Cathode Materials through the Pinning Effects of Gradient Surface Na+ Doping. Advanced Energy Materials, 6, Article 1501914.
https://doi.org/10.1002/aenm.201501914

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133