全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海洋碱性矿物(橄榄石)固碳量计算方法研究
Study on the Calculation Method for Carbon Sequestration Quantity of Marine Alkaline Minerals (Olivine)

DOI: 10.12677/ams.2024.114017, PP. 161-170

Keywords: 海洋碳汇,碱性矿物固碳技术,固碳量,计算方法
Ocean Carbon Sink
, Alkaline Mineral Carbon Sequestration Technology, Carbon Sequestration Quantity, Calculation Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

海洋碳汇的开发目的是利用海洋生态修复、大型藻类养殖和海洋碱化等人工技术,增强海洋吸收和储存CO2的能力,以减缓全球变暖。目前,随着全球气候变化问题日益严峻,海洋碱性矿物固碳技术作为一种创新的海洋碳汇方法,正逐渐受到重视。海水中固定的碳量是海洋碳汇的关键部分,其量级受多种因素影响,如海水温度、盐度、pH值和海洋生物活动等。我国在海水固碳量的计算方法上仍缺少研究。本研究针对海洋碱性矿物固碳技术,探讨了计算固碳量的方法,通过分析海洋碱性矿物的固碳过程,建立了计算模型,为评估该技术的实际应用效果提供了理论基础。本研究提出的海水碱化速率计算方法,已通过实验室规模的、使用真实海水进行的海洋碱性矿物溶解实验的验证。实验结果显示,该方法计算精度较高,能满足海洋碱性矿物增汇项目后续应用的需求。
The development of ocean carbon sinks aims to utilize artificial techniques such as marine ecological restoration, large-scale algae cultivation, and seawater alkalization to enhance the ocean’s capacity to absorb and store carbon dioxide, thereby mitigating global warming. Currently, with the increasing severity of global climate change issues, ocean alkaline mineral carbon sequestration technology, as an innovative method of ocean carbon sinks, is gradually gaining attention. The amount of carbon fixed in seawater is a crucial component of ocean carbon sinks, and its magnitude is influenced by various factors, such as seawater temperature, salinity, pH value, and marine biological activities. There is still a lack of research on computational methods for the amount of carbon fixed in seawater in China. This study focuses on the ocean alkaline mineral carbon sequestration technology and explores methods for calculating the fixed carbon amount. By analyzing the carbon sequestration process of ocean alkaline minerals, a computational model has been established, providing a theoretical basis for evaluating the practical application effects of this technology. The seawater alkalization rate calculation method proposed in this study has been verified through laboratory-scale experiments on the dissolution of ocean alkaline minerals using real seawater. The experimental results indicate that this method has high computational accuracy and can meet the actual requirements for subsequent applications in ocean alkaline mineral carbon sink enhancement projects.

References

[1]  焦念志. 研发海洋“负排放”技术支撑国家“碳中和”需求[J]. 中国科学院院刊, 2021, 36(2): 179-187.
[2]  Renforth, P. and Henderson, G. (2017) Assessing Ocean Alkalinity for Carbon Sequestration. Reviews of Geophysics, 55, 636-674.
https://doi.org/10.1002/2016rg000533
[3]  Hoegh-Guldberg, O., Mumby, P.J., Hooten, A.J., Steneck, R.S., Greenfield, P., Gomez, E., et al. (2007) Coral Reefs under Rapid Climate Change and Ocean Acidification. Science, 318, 1737-1742.
https://doi.org/10.1126/science.1152509
[4]  Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., et al. (2005) Anthropogenic Ocean Acidification over the Twenty-First Century and Its Impact on Calcifying Organisms. Nature, 437, 681-686.
https://doi.org/10.1038/nature04095
[5]  Velbel, M.A. (2009) Dissolution of Olivine during Natural Weathering. Geochimica et Cosmochimica Acta, 73, 6098-6113.
https://doi.org/10.1016/j.gca.2009.07.024
[6]  Caldeira, K., Bala, G. and Cao, L. (2013) The Science of Geoengineering. Annual Review of Earth and Planetary Sciences, 41, 231-256.
https://doi.org/10.1146/annurev-earth-042711-105548
[7]  Naseem, T. and Durrani, T. (2021) The Role of Some Important Metal Oxide Nanoparticles for Wastewater and Antibacterial Applications: A Review. Environmental Chemistry and Ecotoxicology, 3, 59-75.
https://doi.org/10.1016/j.enceco.2020.12.001
[8]  Bach, L.T., Gill, S.J., Rickaby, R.E.M., Gore, S. and Renforth, P. (2019) CO2 Removal with Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-Benefits for Marine Pelagic Ecosystems. Frontiers in Climate, 1, Article 7.
https://doi.org/10.3389/fclim.2019.00007
[9]  Montserrat, F., Renforth, P., Hartmann, J., Leermakers, M., Knops, P. and Meysman, F.J.R. (2017) Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments. Environmental Science & Technology, 51, 3960-3972.
https://doi.org/10.1021/acs.est.6b05942
[10]  Wang, F., Dreisinger, D., Jarvis, M. and Hitchins, T. (2019) Kinetics and Mechanism of Mineral Carbonation of Olivine for CO2 Sequestration. Minerals Engineering, 131, 185-197.
https://doi.org/10.1016/j.mineng.2018.11.024
[11]  张琦. 橄榄石的研究现状及其地质学意义[J]. 地球科学前沿, 2021, 11(4): 459-464.
[12]  孟超, 孟庆新, 李晓龙, 等. 天然镁橄榄石在耐火行业的应用现状及展望[J]. 耐火与石灰, 2021, 46(4): 29-33.
[13]  Rigopoulos, I., Petallidou, K.C., Vasiliades, M.A., Delimitis, A., Ioannou, I., Efstathiou, A.M., et al. (2015) Carbon Dioxide Storage in Olivine Basalts: Effect of Ball Milling Process. Powder Technology, 273, 220-229.
https://doi.org/10.1016/j.powtec.2014.12.046
[14]  Köhler, P., Abrams, J.F., Völker, C., Hauck, J. and Wolf-Gladrow, D.A. (2013) Geoengineering Impact of Open Ocean Dissolution of Olivine on Atmospheric CO2, Surface Ocean pH and Marine Biology. Environmental Research Letters, 8, Article 014009.
https://doi.org/10.1088/1748-9326/8/1/014009
[15]  Hangx, S.J.T. and Spiers, C.J. (2009) Coastal Spreading of Olivine to Control Atmospheric CO2 Concentrations: A Critical Analysis of Viability. International Journal of Greenhouse Gas Control, 3, 757-767.
https://doi.org/10.1016/j.ijggc.2009.07.001
[16]  Strefler, J., Amann, T., Bauer, N., Kriegler, E. and Hartmann, J. (2018) Potential and Costs of Carbon Dioxide Removal by Enhanced Weathering of Rocks. Environmental Research Letters, 13, Article 034010.
https://doi.org/10.1088/1748-9326/aaa9c4
[17]  Moosdorf, N., Renforth, P. and Hartmann, J. (2014) Carbon Dioxide Efficiency of Terrestrial Enhanced Weathering. Environmental Science & Technology, 48, 4809-4816.
https://doi.org/10.1021/es4052022

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133