全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MUC20与肿瘤关联性研究
Study on MUC20 and Tumor Association

DOI: 10.12677/acm.2024.14123045, PP. 33-46

Keywords: 粘蛋白,MUC20,肿瘤学,肿瘤细胞
Mucins
, MUC20, Oncology, Tumor Cell

Full-Text   Cite this paper   Add to My Lib

Abstract:

MUC20是由上皮组织分泌的高分子量糖蛋白,是粘蛋白的一种。作为新近被发现的粘蛋白,MUC20在结肠、食管、胆囊、肾脏、膀胱等正常组织中均有表达,而相关研究表明其参与组织器官的保护、信号传递等活动。另外,随着对该粘蛋白的研究逐渐增加,目前已证实其在多种病变的器官、组织中存在,且与相应器官肿瘤的发生发展密切相关,如胰腺癌、结直肠癌、胃癌、子宫内膜癌、卵巢癌、膀胱癌等。本文将介绍MUC20的蛋白结构、功能位点、组织表达情况,此外还将分系统综述MUC20粘蛋白及与MUC20密切相关的粘蛋白和各系统器官恶性肿瘤之间的关联,并提出一定的见解,为以后的相关研究提供相关思路。
MUC20 is a high-molecular-weight glycoprotein secreted by epithelial tissues and is a type of mucin. As a newly discovered mucin, MUC20 is expressed in normal tissues such as the colon, esophagus, gallbladder, kidney, and bladder, and related studies have shown that it is involved in the protection of tissues and organs, signaling and other activities. In addition, with the gradual increase of research on mucin, it has been found that mucin exists in a variety of diseased organs and tissues, and is closely related to the occurrence and development of tumors in corresponding organs, such as pancreatic cancer, colorectal cancer, gastric cancer, endometrial cancer, ovarian cancer, bladder cancer, etc. In this article, we will introduce the protein structure, functional sites, and tissue expression of MUC20, and systematically review the association between MUC20 and mucins closely related to MUC20 and malignant tumors of various systems and organs, and put forward some insights to provide relevant ideas for future related research.

References

[1]  Byrd, J.C. and Bresalier, R.S. (2004) Mucins and Mucin Binding Proteins in Colorectal Cancer. Cancer and Metastasis Reviews, 23, 77-99.
https://doi.org/10.1023/a:1025815113599
[2]  Corfield, A.P. and Shukla, A.K. (2003) Mucins: Vital Components of the Mucosal Defensive Barrier. Genomic/Proteomic Technology, 3, 20-22.
[3]  Hollingsworth, M.A. and Swanson, B.J. (2004) Mucins in Cancer: Protection and Control of the Cell Surface. Nature Reviews Cancer, 4, 45-60.
https://doi.org/10.1038/nrc1251
[4]  Bansil, R., Stanley, E. and Lamont, J.T. (1995) Mucin Biophysics. Annual Review of Physiology, 57, 635-657.
https://doi.org/10.1146/annurev.ph.57.030195.003223
[5]  Govindarajan, B. and Gipson, I.K. (2010) Membrane-Tethered Mucins Have Multiple Functions on the Ocular Surface. Experimental Eye Research, 90, 655-663.
https://doi.org/10.1016/j.exer.2010.02.014
[6]  Kim, Y.S. and Gum, J.R. (1995) Diversity of Mucin Genes, Structure, Function, and Expression. Gastroenterology, 109, 999-1001.
https://doi.org/10.1016/0016-5085(95)90412-3
[7]  Smagghe, B.J., Stewart, A.K., Carter, M.G., Shelton, L.M., Bernier, K.J., Hartman, E.J., et al. (2013) MUC1* Ligand, NM23-H1, Is a Novel Growth Factor That Maintains Human Stem Cells in a More Naïve State. PLOS ONE, 8, e58601.
https://doi.org/10.1371/journal.pone.0058601
[8]  Cox, K.E., Liu, S., Lwin, T.M., Hoffman, R.M., Batra, S.K. and Bouvet, M. (2023) The Mucin Family of Proteins: Candidates as Potential Biomarkers for Colon Cancer. Cancers, 15, Article 1491.
https://doi.org/10.3390/cancers15051491
[9]  Demouveaux, B., Gouyer, V., Gottrand, F., Narita, T. and Desseyn, J. (2018) Gel-forming Mucin Interactome Drives Mucus Viscoelasticity. Advances in Colloid and Interface Science, 252, 69-82.
https://doi.org/10.1016/j.cis.2017.12.005
[10]  Verma, M. and Davidson, E.A. (1994) Mucin Genes: Structure, Expression and Regulation. Glycoconjugate Journal, 11, 172-179.
https://doi.org/10.1007/bf00731215
[11]  Higuchi, T., Orita, T., Nakanishi, S., Katsuya, K., Watanabe, H., Yamasaki, Y., et al. (2004) Molecular Cloning, Genomic Structure, and Expression Analysis of MUC20, a Novel Mucin Protein, Up-Regulated in Injured Kidney. Journal of Biological Chemistry, 279, 1968-1979.
https://doi.org/10.1074/jbc.m304558200
[12]  Waga, I., Yamamoto, J., Sasai, H., Munger, W.E., Hogan, S.L., Preston, G.A., et al. (2003) Altered mRNA Expression in Renal Biopsy Tissue from Patients with Iga Nephropathy. Kidney International, 64, 1253-1264.
https://doi.org/10.1046/j.1523-1755.2003.00220.x
[13]  Higuchi, T., Orita, T., Katsuya, K., Yamasaki, Y., Akiyama, K., Li, H., et al. (2004) MUC20 Suppresses the Hepatocyte Growth Factor-Induced Grb2-Ras Pathway by Binding to a Multifunctional Docking Site of Met. Molecular and Cellular Biology, 24, 7456-7468.
https://doi.org/10.1128/mcb.24.17.7456-7468.2004
[14]  Cao, R., Wang, T.T., DeMaria, G., Sheehan, J.K. and Kesimer, M. (2012) Mapping the Protein Domain Structures of the Respiratory Mucins: A Mucin Proteome Coverage Study. Journal of Proteome Research, 11, 4013-4023.
https://doi.org/10.1021/pr300058z
[15]  Skead, G. and Govender, D. (2015) Gene of the Month: MET. Journal of Clinical Pathology, 68, 405-409.
https://doi.org/10.1136/jclinpath-2015-203050
[16]  Liu, Y. (1998) The Human Hepatocyte Growth Factor Receptor Gene: Complete Structural Organization and Promoter Characterization. Gene, 215, 159-169.
https://doi.org/10.1016/s0378-1119(98)00264-9
[17]  Organ, S.L. and Tsao, M. (2011) An Overview of the C-MET Signaling Pathway. Therapeutic Advances in Medical Oncology, 3, S7-S19.
https://doi.org/10.1177/1758834011422556
[18]  Fagerberg, L., Hallström, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., et al. (2014) Analysis of the Human Tissue-Specific Expression by Genome-Wide Integration of Transcriptomics and Antibody-Based Proteomics. Molecular & Cellular Proteomics, 13, 397-406.
https://doi.org/10.1074/mcp.m113.035600
[19]  King, R.J., Yu, F. and Singh, P.K. (2017) Genomic Alterations in Mucins across Cancers. Oncotarget, 8, 67152-67168.
https://doi.org/10.18632/oncotarget.17934
[20]  Fu, L., Yonemura, A., Yasuda-Yoshihara, N., Umemoto, T., Zhang, J., Yasuda, T., et al. (2022) Intracellular MUC20 Variant 2 Maintains Mitochondrial Calcium Homeostasis and Enhances Drug Resistance in Gastric Cancer. Gastric Cancer, 25, 542-557.
https://doi.org/10.1007/s10120-022-01283-z
[21]  Jonckheere, N. and Van Seuningen, I. (2018) Integrative Analysis of the Cancer Genome Atlas and Cancer Cell Lines Encyclopedia Large-Scale Genomic Databases: MUC4/MUC16/MUC20 Signature Is Associated with Poor Survival in Human Carcinomas. Journal of Translational Medicine, 16, Article No. 259.
https://doi.org/10.1186/s12967-018-1632-2
[22]  Xiao, X., Wang, L., Wei, P., Chi, Y., Li, D., Wang, Q., et al. (2013) Role of MUC20 Overexpression as a Predictor of Recurrence and Poor Outcome in Colorectal Cancer. Journal of Translational Medicine, 11, Article No. 151.
https://doi.org/10.1186/1479-5876-11-151
[23]  Vymetalkova, V., Pardini, B., Rosa, F., Jiraskova, K., Di Gaetano, C., Bendova, P., et al. (2016) Polymorphisms in Microrna Binding Sites of Mucin Genes as Predictors of Clinical Outcome in Colorectal Cancer Patients. Carcinogenesis, 38, 28-39.
https://doi.org/10.1093/carcin/bgw114
[24]  Aziz, M.A., AlOtaibi, M., AlAbdulrahman, A., et al. (2014) Mucin Family Genes Are Downregulated in Colorectal Cancer Patients. Journal of Carcinogenesis & Mutagenesis, 2014, 1-7.
[25]  Jiang, Z., Wang, H., Li, L., Hou, Z., Liu, W., Zhou, T., et al. (2019) Analysis of TGCA Data Reveals Genetic and Epigenetic Changes and Biological Function of MUC Family Genes in Colorectal Cancer. Future Oncology, 15, 4031-4043.
https://doi.org/10.2217/fon-2019-0363
[26]  Chen, M., Zhang, X., Ming, Z., Feng, X., Han, Z., et al. (2024) Characterizing and Forecasting Neoantigens-Resulting from MUC Mutations in Coad. Journal of Translational Medicine, 22, Article No. 315.
https://doi.org/10.1186/s12967-024-05103-z
[27]  Chen, K., Wang, H., Shen, L., Lin, Y., Shi, Q. and Yang, Y. (2015) The Expression and Prognostic Significance of Mucin 13 and Mucin 20 in Esophageal Squamous Cell Carcinoma. Journal of Cancer Research and Therapeutics, 11, C74-C79.
https://doi.org/10.4103/0973-1482.163846
[28]  Shen, L., Wang, H., Dong, B., Yan, W., Lin, Y., Shi, Q., et al. (2015) Possible Prediction of the Response of Esophageal Squamous Cell Carcinoma to Neoadjuvant Chemotherapy Based on Gene Expression Profiling. Oncotarget, 7, 4531-4541.
https://doi.org/10.18632/oncotarget.6554
[29]  Li, M., Feng, Z., Han, R., Hu, B., Zhang, R. and Wang, H. (2023) Paclitaxel Promotes mTOR Signaling‐Mediated Apoptosis in Esophageal Cancer Cells by Targeting muc20. Thoracic Cancer, 14, 3089-3096.
https://doi.org/10.1111/1759-7714.15091
[30]  Zhang, X., Peng, L., Luo, Y., Zhang, S., Pu, Y., Chen, Y., et al. (2021) Dissecting Esophageal Squamous-Cell Carcinoma Ecosystem by Single-Cell Transcriptomic Analysis. Nature Communications, 12, Article No. 5291.
https://doi.org/10.1038/s41467-021-25539-x
[31]  Yonezawa, S., Higashi, M., Yamada, N., Yokoyama, S. and Goto, M. (2009) Significance of Mucin Expression in Pancreatobiliary Neoplasms. Journal of Hepato-Biliary-Pancreatic Sciences, 17, 108-124.
https://doi.org/10.1007/s00534-009-0174-7
[32]  Rachagani, S., Torres, M.P., Moniaux, N. and Batra, S.K. (2009) Current Status of Mucins in the Diagnosis and Therapy of Cancer. BioFactors, 35, 509-527.
https://doi.org/10.1002/biof.64
[33]  Komatsu, H., Tanji, E., Sakata, N., Aoki, T., Motoi, F., Naitoh, T., et al. (2014) A GNAS Mutation Found in Pancreatic Intraductal Papillary Mucinous Neoplasms Induces Drastic Alterations of Gene Expression Profiles with Upregulation of Mucin Genes. PLOS ONE, 9, e87875.
https://doi.org/10.1371/journal.pone.0087875
[34]  Xu, W., Zhang, M., Liu, L., Yin, M., Xu, C. and Weng, Z. (2022) Association of Mucin Family Members with Prognostic Significance in Pancreatic Cancer Patients: A Meta-Analysis. PLOS ONE, 17, e0269612.
https://doi.org/10.1371/journal.pone.0269612
[35]  Chen, S., Kuo, T., Liao, Y., Lin, M., Tien, Y. and Huang, M. (2018) Silencing of MUC20 Suppresses the Malignant Character of Pancreatic Ductal Adenocarcinoma Cells through Inhibition of the HGF/MET Pathway. Oncogene, 37, 6041-6053.
https://doi.org/10.1038/s41388-018-0403-0
[36]  Sasahira, T., Kurihara-Shimomura, M., Shimomura, H., Bosserhoff, A.K. and Kirita, T. (2021) Identification of Oral Squamous Cell Carcinoma Markers MUC2 and SPRR1B Downstream of Tango. Journal of Cancer Research and Clinical Oncology, 147, 1659-1672.
https://doi.org/10.1007/s00432-021-03568-9
[37]  Aplin, J.D., Seif, M.W., Graham, R.A., Hey, N.A., Behzad, F. and Campbell, S. (1994) The Endometrial Cell Surface and Implantation. Expression of the Polymorphic Mucin MUC-1 and Adhesion Molecules during the Endometrial Cycle. Annals of the New York Academy of Sciences, 734, 103-121.
https://doi.org/10.1111/j.1749-6632.1994.tb21739.x
[38]  Horne, A.W., White, J.O., Margara, R.A., Williams, R., Winston, R.M. and Lalani, E. (2001) MUC 1: A Genetic Susceptibility to Infertility? The Lancet, 357, 1336-1337.
https://doi.org/10.1016/s0140-6736(00)04502-5
[39]  Sivridis, E., Giatromanolaki, A., Koukourakis, M.I., Georgiou, L. and Anastasiadis, P. (2002) Patterns of Episialin/MUC1 Expression in Endometrial Carcinomas and Prognostic Relevance. Histopathology, 40, 92-100.
https://doi.org/10.1046/j.1365-2559.2002.01316.x
[40]  Hebbar, V., Damera, G. and Sachdev, G.P. (2005) Differential Expression of MUC Genes in Endometrial and Cervical Tissues and Tumors. BMC Cancer, 5, Article No. 124.
https://doi.org/10.1186/1471-2407-5-124
[41]  Morrison, C., Merati, K., Marsh, W.L., De Lott, L., Cohn, D.E., Young, G., et al. (2007) The Mucin Expression Profile of Endometrial Carcinoma and Correlation with Clinical-Pathologic Parameters. Applied Immunohistochemistry & Molecular Morphology, 15, 426-431.
https://doi.org/10.1097/01.pai.0000213117.73720.89
[42]  Chen, C., Wang, S., Chen, C., Huang, M., Hung, J., Huang, H., et al. (2013) MUC20 Overexpression Predicts Poor Prognosis and Enhances EGF-Induced Malignant Phenotypes via Activation of the EGFR-STAT3 Pathway in Endometrial Cancer. Gynecologic Oncology, 128, 560-567.
https://doi.org/10.1016/j.ygyno.2012.12.012
[43]  Dedes, K.J., Wetterskog, D., Ashworth, A., Kaye, S.B. and Reis-Filho, J.S. (2011) Emerging Therapeutic Targets in Endometrial Cancer. Nature Reviews Clinical Oncology, 8, 261-271.
https://doi.org/10.1038/nrclinonc.2010.216
[44]  Zheng, F., Yu, H. and Lu, J. (2019) High Expression of MUC20 Drives Tumorigenesis and Predicts Poor Survival in Endometrial Cancer. Journal of Cellular Biochemistry, 120, 11859-11866.
https://doi.org/10.1002/jcb.28466
[45]  Chen, C., Shyu, M., Wang, S., Chou, C., Huang, M., Lin, T., et al. (2016) MUC20 Promotes Aggressive Phenotypes of Epithelial Ovarian Cancer Cells via Activation of the Integrin Β1 Pathway. Gynecologic Oncology, 140, 131-137.
https://doi.org/10.1016/j.ygyno.2015.11.025
[46]  Cannistra, S.A. (2004) Cancer of the Ovary. New England Journal of Medicine, 351, 2519-2529.
https://doi.org/10.1056/nejmra041842
[47]  Marchocki, Z., Tone, A., Virtanen, C., de Borja, R., Clarke, B., Brown, T., et al. (2022) Impact of Neoadjuvant Chemotherapy on Somatic Mutation Status in High-Grade Serous Ovarian Carcinoma. Journal of Ovarian Research, 15, Article No. 50.
https://doi.org/10.1186/s13048-022-00983-5
[48]  Kong, X., Ding, L.J. and Wang, Z.X. (2017) Mucin Expression Profile of Benign and Malignant Cervical Tissues and Correlation with Clinical-Pathologic Parameters. European Journal of Gynaecological Oncology, 38, 350-355.
[49]  Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48.
https://doi.org/10.3322/caac.21763
[50]  Xue, B., Guo, W.M., Jia, J.D., et al. (2022) MUC20 as a Novel Prognostic Biomarker in ccRCC Correlating with Tumor Immune Microenvironment Modulation. American Journal of Cancer Research, 12, 695-712.
[51]  Dai, R., Zhou, Y., Chen, Z., Zou, Z., Pan, Z., Liu, P., et al. (2020) Lnc‐MUC20‐9 Binds to ROCK1 and Functions as a Tumor Suppressor in Bladder Cancer. Journal of Cellular Biochemistry, 121, 4214-4225.
https://doi.org/10.1002/jcb.29626
[52]  Wang, X., Shirazi, F., Yan, W., Liu, X., Wang, H., Orlowski, R.Z., et al. (2021) Mucin 20 Modulates Proteasome Capacity through C‐Met Signalling to Increase Carfilzomib Sensitivity in Mantle Cell Lymphoma. Journal of Cellular and Molecular Medicine, 25, 10164-10174.
https://doi.org/10.1111/jcmm.16953
[53]  Wang, X., Shi, Y., Shi, H., Liu, X., Liao, A., Liu, Z., et al. (2024) MUC20 Regulated by Extrachromosomal Circular DNA Attenuates Proteasome Inhibitor Resistance of Multiple Myeloma by Modulating Cuproptosis. Journal of Experimental & Clinical Cancer Research, 43, Article No. 68.
https://doi.org/10.1186/s13046-024-02972-6
[54]  Ma, J., Rubin, B.K. and Voynow, J.A. (2018) Mucins, Mucus, and Goblet Cells. Chest, 154, 169-176.
https://doi.org/10.1016/j.chest.2017.11.008
[55]  Molina, J.R., Yang, P., Cassivi, S.D., Schild, S.E. and Adjei, A.A. (2008) Non-Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clinic Proceedings, 83, 584-594.
https://doi.org/10.4065/83.5.584
[56]  Ning, Y., Zheng, H., Zhan, Y., Liu, S., Yang, Y., Zang, H., et al. (2020) Comprehensive Analysis of the Mechanism and Treatment Significance of Mucins in Lung Cancer. Journal of Experimental & Clinical Cancer Research, 39, Article No. 162.
https://doi.org/10.1186/s13046-020-01662-3
[57]  Tu, J., Tang, M., Li, G., Chen, L., Wang, Y. and Huang, Y. (2022) Expression of Mucin Family Proteins in Non-Small-Cell Lung Cancer and Its Role in Evaluation of Prognosis. Journal of Oncology, 2022, Article ID: 4181658.
https://doi.org/10.1155/2022/4181658
[58]  Giatromanolaki, A., Koukourakis, M.I., Sivridis, E., et al. (2000) Coexpression of MUC1 Glycoprotein with Multiple Angiogenic Factors in Non-Small Cell Lung Cancer Suggests Coactivation of Angiogenic and Migration Pathways. Clinical Cancer Research, 6, 1917-1921.
[59]  Yao, M., Zhang, W., Zhang, Q., Xing, L., Xu, A., Liu, Q., et al. (2011) Overexpression of MUC1 Enhances Proangiogenic Activity of Non-Small-Cell Lung Cancer Cells through Activation of Akt and Extracellular Signal-Regulated Kinase Pathways. Lung, 189, 453-460.
https://doi.org/10.1007/s00408-011-9327-y
[60]  Yu, C., Zhang, L., Luo, D., Yan, F., Liu, J., Shao, S., et al. (2018) microRNA-146b-3p Promotes Cell Metastasis by Directly Targeting NF2 in Human Papillary Thyroid Cancer. Thyroid, 28, 1627-1641.
https://doi.org/10.1089/thy.2017.0626
[61]  Hou, S., Xie, X., Zhao, J., Wu, C., Li, N., Meng, Z., et al. (2021) Downregulation of Mir-146b-3p Inhibits Proliferation and Migration and Modulates the Expression and Location of Sodium/Iodide Symporter in Dedifferentiated Thyroid Cancer by Potentially Targeting MUC20. Frontiers in Oncology, 10, Article 566365.
https://doi.org/10.3389/fonc.2020.566365
[62]  Lu, T.X. and Rothenberg, M.E. (2018) MicroRNA. Journal of Allergy and Clinical Immunology, 141, 1202-1207.
https://doi.org/10.1016/j.jaci.2017.08.034
[63]  Riesco-Eizaguirre, G., Wert-Lamas, L., Perales-Patón, J., Sastre-Perona, A., Fernández, L.P. and Santisteban, P. (2015) The miR-146b-3p/PAX8/NIS Regulatory Circuit Modulates the Differentiation Phenotype and Function of Thyroid Cells during Carcinogenesis. Cancer Research, 75, 4119-4130.
https://doi.org/10.1158/0008-5472.can-14-3547
[64]  McGuckin, M.A., Lindén, S.K., Sutton, P. and Florin, T.H. (2011) Mucin Dynamics and Enteric Pathogens. Nature Reviews Microbiology, 9, 265-278.
https://doi.org/10.1038/nrmicro2538
[65]  Linden, S.K., Sutton, P., Karlsson, N.G., Korolik, V. and McGuckin, M.A. (2008) Mucins in the Mucosal Barrier to Infection. Mucosal Immunology, 1, 183-197.
https://doi.org/10.1038/mi.2008.5
[66]  Pedram, K., Shon, D.J., Tender, G.S., Mantuano, N.R., Northey, J.J., Metcalf, K.J., et al. (2023) Design of a Mucin-Selective Protease for Targeted Degradation of Cancer-Associated Mucins. Nature Biotechnology, 42, 597-607.
https://doi.org/10.1038/s41587-023-01840-6
[67]  Kufe, D.W. (2009) Functional Targeting of the MUC1 Oncogene in Human Cancers. Cancer Biology & Therapy, 8, 1197-1203.
https://doi.org/10.4161/cbt.8.13.8844
[68]  Agata, N., Ahmad, R., Kawano, T., Raina, D., Kharbanda, S. and Kufe, D. (2008) MUC1 Oncoprotein Blocks Death Receptor-Mediated Apoptosis by Inhibiting Recruitment of Caspase-8. Cancer Research, 68, 6136-6144.
https://doi.org/10.1158/0008-5472.can-08-0464
[69]  Chauhan, S.C., Vannatta, K., Ebeling, M.C., Vinayek, N., Watanabe, A., Pandey, K.K., et al. (2009) Expression and Functions of Transmembrane Mucin MUC13 in Ovarian Cancer. Cancer Research, 69, 765-774.
https://doi.org/10.1158/0008-5472.can-08-0587
[70]  Krishn, S.R., Ganguly, K., Kaur, S. and Batra, S.K. (2018) Ramifications of Secreted Mucin MUC5AC in Malignant Journey: A Holistic View. Carcinogenesis, 39, 633-651.
https://doi.org/10.1093/carcin/bgy019
[71]  Lakshmanan, I., Rachagani, S., Hauke, R., Krishn, S.R., Paknikar, S., Seshacharyulu, P., et al. (2016) MUC5AC Interactions with Integrin Β4 Enhances the Migration of Lung Cancer Cells through FAK Signaling. Oncogene, 35, 4112-4121.
https://doi.org/10.1038/onc.2015.478
[72]  Pothuraju, R., Rachagani, S., Krishn, S.R., Chaudhary, S., Nimmakayala, R.K., Siddiqui, J.A., et al. (2020) Molecular Implications of MUC5AC-CD44 Axis in Colorectal Cancer Progression and Chemoresistance. Molecular Cancer, 19, Article No. 37.
https://doi.org/10.1186/s12943-020-01156-y
[73]  Yamamoto-Furusho, J.K., Ascaño-Gutiérrez, I., Furuzawa-Carballeda, J. and Fonseca-Camarillo, G. (2015) Differential Expression of MUC12, MUC16, and MUC20 in Patients with Active and Remission Ulcerative Colitis. Mediators of Inflammation, 2015, Article ID: 659018.
https://doi.org/10.1155/2015/659018

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133