Evaluation of the Antimicrobial and Anti-Free Radical Scavenging Properties and Phytochemical Analysis of Hydroethanolic Extract of Phyllanthus muellerianus (Kuntze) Exell
The aim of this study was to evaluate the antimicrobial and antiradical properties of extracts from the leaves, stems and roots of Phyllanthus muellerianus, a plant used in traditional Togolese medicine. Agar well-diffusion and broth microdilution methods were used to assess the antimicrobial potential of hydroethanolic extracts from plant organs. Phytochemical compounds, total phenol and condensed tannin content, and free radical scavenging activity were determined in the three extracts. The results of the antimicrobial tests showed that the extract of P. muellerianus leaves was the most active on Staphylococcus strains, with inhibition diameters of 17 to 23 mm and minimum inhibitory concentrations (MICs) of between 2.5 and 10 mg/mL. Tannins, saponins, alkaloids and flavonoids were found in all extracts. The P. muellerianus leaf extract has 4.23 ± 0.25 mgAGE/g of total phenols, the stem extract has 2.96 ± 0.05 mgCE/g of condensed tannins and the root extract expressed a higher antiradical compounds content (0.125 ± 0.003 mgAAE/g). The results of this study demonstrate the antimicrobial and free radical scavenging potential of the plant and contribute to justify its use in traditional medicine.
References
[1]
Ozma, M.A., Moaddab, S.R., Hosseini, H., Khodadadi, E., Ghotaslou, R., Asgharzadeh, M., et al. (2023) A Critical Review of Novel Antibiotic Resistance Prevention Approaches with a Focus on Postbiotics. Critical Reviews in Food Science and Nutrition, 64, 9637-9655. https://doi.org/10.1080/10408398.2023.2214818
[2]
Ahmed, S.K., Hussein, S., Qurbani, K., Ibrahim, R.H., Fareeq, A., Mahmood, K.A., et al. (2024) Antimicrobial Resistance: Impacts, Challenges, and Future Prospects. Journal of Medicine, Surgery, and Public Health, 2, Article 100081. https://doi.org/10.1016/j.glmedi.2024.100081
[3]
Deepika, and Maurya, P.K. (2022) Health Benefits of Quercetin in Age-Related Diseases. Molecules, 27, Article 2498. https://doi.org/10.3390/molecules27082498
[4]
Batiha, G.E., Beshbishy, A.M., Ikram, M., Mulla, Z.S., El-Hack, M.E.A., Taha, A.E., et al. (2020) The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods, 9, Article 374. https://doi.org/10.3390/foods9030374
[5]
Lv, X., Zhao, S., Ning, Z., Zeng, H., Shu, Y., Tao, O., et al. (2015) Citrus Fruits as a Treasure Trove of Active Natural Metabolites That Potentially Provide Benefits for Human Health. Chemistry Central Journal, 9, Article No. 68. https://doi.org/10.1186/s13065-015-0145-9
[6]
Vitalini, S., Tomè, F. and Fico, G. (2009) Traditional Uses of Medicinal Plants in Valvestino (Italy). Journal of Ethnopharmacology, 121, 106-116. https://doi.org/10.1016/j.jep.2008.10.005
[7]
WHO (2017) Strategic Occupational Health and Safety Plan for Health Workers in Togo: 2017-2022. https://www.afro.who.int/publications/plan-strategique-de-securite-et-sante-au-travail-pour-le-personnel-de-sante-au-togo
[8]
Karou, S., Agbodeka, K., Gbekley, H., Anani, K., Agbonon, A., Tchacondo, T., et al. (2016) Ethnobotanical Study of Medicinal Plants Used for the Treatment of Malaria in the Plateau Region, Togo. Pharmacognosy Research, 8, 12-18. https://doi.org/10.4103/0974-8490.178646
[9]
Kpodar, M.S., Karou, S.D., Katawa, G., Anani, K., Gbekley, H.E., Adjrah, Y., et al. (2016) An Ethnobotanical Study of Plants Used to Treat Liver Diseases in the Maritime Region of Togo. Journal of Ethnopharmacology, 181, 263-273. https://doi.org/10.1016/j.jep.2015.12.051
Doughari, J.H. and Sunday, D. (2008) Antibacterial Activity of Phyllanthus muellerianus. Pharmaceutical Biology, 46, 400-405. https://doi.org/10.1080/13880200802055842
[12]
Hoekou, Y., Batawila, K., Gbogbo, K., Karou, D., Ameyapoh, Y. and Souza, C. (2013) Evaluation des propriétés antimicrobiennes de quatre plantes de la flore togolaise utilisées en médecine traditionnelle dans le traitement des diarrhées infantiles. International Journal of Biological and Chemical Sciences, 6, 3089-3097. https://doi.org/10.4314/ijbcs.v6i6.10
[13]
Katsayal, U.A. and Lamai, R.L. (2009) Preliminary Phytochemical and Antibacterial Screening of the Ethanolic Stem Bark Extract of Phyllanthus muellerianus. Nigerian Journal of Pharmaceutical Sciences, 8, 121-125.
[14]
Brusotti, G., Cesari, I., Frassà, G., Grisoli, P., Dacarro, C. and Caccialanza, G. (2011) Antimicrobial Properties of Stem Bark Extracts from Phyllanthus muellerianus (Kuntze) Excell. Journal of Ethnopharmacology, 135, 797-800. https://doi.org/10.1016/j.jep.2011.03.042
[15]
Musuasua, M.M., Kabena, O.N., Kalanda, L.K., Kangudia, B.G.M., Mutembue, D.B., Masens, D.M.Y., et al. (2022) Phytochemical Screening and in Vitro Antibacterial Activity of Aqueous Extracts of Phyllanthus muellerianus (Kuntze) Exell from Kasaï Oriental (DRC) on a Few Bacterial Strains. International Journal of Pathogen Research, 9, 22-33. https://doi.org/10.9734/ijpr/2022/v9i130217
[16]
Boakye, Y.D. (2016) Anti-Infective Properties and Time-Kill Kinetics of Phyllanthus muellerianus and Its Major Constituent, Geraniin. Medicinal Chemistry, 6, 95-104. https://doi.org/10.4172/2161-0444.1000332
[17]
Boakye, Y., Agyare, C. and Dapaah, S. (2016) In Vitro and in Vivo Antioxidant Properties of Phyllanthus muellerianus and Its Major Constituent, Geraniin. Oxidants and Antioxidants in Medical Science, 5, 70-78. https://doi.org/10.5455/oams..290616.or.099
[18]
Ajiboye, T.O., Ahmad, F.M., Daisi, A.O., Yahaya, A.A., Ibitoye, O.B., Muritala, H.F., et al. (2017) Hepatoprotective Potential of Phyllanthus muellerianus Leaf Extract: Studies on Hepatic, Oxidative Stress and Inflammatory Biomarkers. Pharmaceutical Biology, 55, 1662-1670. https://doi.org/10.1080/13880209.2017.1317819
[19]
Hoekou, Y.P., Tchacondo, T., Gbogbo, K.A., Tchelougou, D., Pissang, P., Karou, S.D., et al. (2015) Antibacterial Activities of Three Latex Plants of Asclepiadaceae Family Used in Traditional Medicine in South Togo. International Journal of Current Microbiology and Applied Sciences, 4, 882-891.
[20]
CASFM (2020) Comité de l’antibiogramme de la Société Française de Microbiologie. Société Française de Microbiologie, 1, 181.
[21]
Hoekou, Y.P., Tchacondo, T., Karou, S.D., Yerbanga, R.S., Achoribo, E., Da, O., et al. (2017) Therapeutic Potentials of Ethanolic Extract of Leaves of Holarrhena Floribunda (G. Don) Dur. and Schinz (Apocynaceae). African Journal of Traditional, Complementary and Alternative Medicines, 14, 227-233. https://doi.org/10.21010/ajtcam.v14i2.24
[22]
NCCLS (2003) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 6th Edition.
[23]
Harborne, J.B. (1998) Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. Chapman & Hall Publications.
[24]
Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M. (1999) Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In: Methods in Enzymology, Elsevier, 152-178. https://doi.org/10.1016/s0076-6879(99)99017-1
[25]
Porter, L.J., Hrstich, L.N. and Chan, B.G. (1985) The Conversion of Procyanidins and Prodelphinidins to Cyanidin and Delphinidin. Phytochemistry, 25, 223-230. https://doi.org/10.1016/s0031-9422(00)94533-3
[26]
Aksamit-Stachurska, A., Korobczak-Sosna, A., Kulma, A. and Szopa, J. (2008) Glycosyltransferase Efficiently Controls Phenylpropanoid Pathway. BMC Biotechnology, 8, Article No. 25. https://doi.org/10.1186/1472-6750-8-25
[27]
Prieto, P., Pineda, M. and Aguilar, M. (1999) Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry, 269, 337-341. https://doi.org/10.1006/abio.1999.4019
[28]
Akharaiyi, F.C., Dina, A.O. and Okafor, A.C. (2019) Antimicrobial Activities, Phytochemical and Antioxidant Analyses of Phyllanthus mullerianus (KUNTZ) Exell Methanol and Aqueous Leaf Extracts. Arabian Journal of Medicinal and Aromatic Plants, 5, 23-41.
[29]
Muylaert, A. and Mainil, J.G. (2012) Résistances bactériennes aux antibiotiques: Les mécanismes et leur « contagiosité ». Annales de médecine vétérinaire, 156, 109-123.
[30]
Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., et al. (2022) Antibiotic Resistance in Bacteria—A Review. Antibiotics, 11, Article 1079. https://doi.org/10.3390/antibiotics11081079
[31]
Obuotor, T.M., Kolawole, A.O., Adeyanju, F.O. and Adewumi, S.S. (2021) Antimicrobial Activity of Sida acuta, Phyllanthus amarus and Phyllanthus muellerianus against Microorganisms Implicated in Urinary Tract Infections. Ife Journal of Science, 23, 153-168. https://doi.org/10.4314/ijs.v23i2.16
[32]
Obuotor, T.M., Kolawole, A.O., Apalowo, O.E. and Akamo, A.J. (2021) Metabolic Profiling, ADME Pharmacokinetics, Molecular Docking Studies and Antibacterial Potential of Phyllantus muellerianus Leaves. Advances in Traditional Medicine, 23, 427-442. https://doi.org/10.1007/s13596-021-00611-5
[33]
Assob, J.C., Kamga, H.L., Nsagha, D.S., Njunda, A.L., Nde, P.F., Asongalem, E.A., et al. (2011) Antimicrobial and Toxicological Activities of Five Medicinal Plant Species from Cameroon Traditional Medicine. BMC Complementary and Alternative Medicine, 11, 1-11. https://doi.org/10.1186/1472-6882-11-70
[34]
Olalekan, O.J., Apenah, M.O., Ogunbela, A.A., et al. (2020) Evaluation of the Phytochemical, Antioxydant and Nutrional Properties of Phyllanthus muellerianus Leaves. Journal of Research in Forestry, Wildlife and Environment, 12. https://www.ajol.info/index.php/jrfwe
[35]
Perera, D., Soysa, P. and Wijeratne, S. (2016) Polyphenols Contribute to the Antioxidant and Antiproliferative Activity of Phyllanthus Debilis Plant In-Vitro. BMC Complementary and Alternative Medicine, 16, Article No. 339. https://doi.org/10.1186/s12906-016-1324-5
[36]
He, F., Pan, Q., Shi, Y. and Duan, C. (2008) Biosynthesis and Genetic Regulation of Proanthocyanidins in Plants. Molecules, 13, 2674-2703. https://doi.org/10.3390/molecules13102674
[37]
Brusotti, G., Ngueyem, T.A., Biesuz, R. and Caccialanza, G. (2010) Optimum Extraction Process of Polyphenols from Bridelia Grandis Stem Bark Using Experimental Design. Journal of Separation Science, 33, 1692-1697. https://doi.org/10.1002/jssc.200900717