全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rare Diseases and Antisense Oligonucleotides: A Mirage or Miracle

DOI: 10.4236/jbm.2024.1212003, PP. 22-39

Keywords: Antisense Oligonucleotides, Rare Diseases, Gene Therapy, Off-Target Effects, Duchenne Muscular Dystrophy, Timothy Syndrome

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gene therapy and antisense oligonucleotides (ASOs) are promising approaches to treating rare diseases by targeting specific genes. However, ASOs can have off-target effects that need careful consideration during development. Researchers can add moieties like peptide nucleic acid or methoxyethyl-modified ribose sugars to enhance specificity and reduce toxicity. Current research suggests that challenges such as nonspecific action, interference at various stages, adverse reactions, and nuclease degradation may soon be manageable with advanced technologies. ASOs show particular promise in treating rare conditions like Duchenne Muscular Dystrophy (DMD) and Timothy syndrome. Stereopure ASOs with repeated left-right patterns offer increased potency and half-life due to their resistance to nuclease activity and improved cellular uptake. This review explores how technological advancements can enhance the use of ASOs to manage various rare disease conditions effectively. Despite challenges in development and application, ASO therapy holds the potential to become a viable treatment option for a wide range of rare diseases. Advances in technology offer the possibility of increasing specificity and reducing toxicity, making ASO therapy a more effective and safe treatment option for patients with rare diseases.

References

[1]  Doxakis, E. (2020) Therapeutic Antisense Oligonucleotides for Movement Disorders. Medicinal Research Reviews, 41, 2656-2688.
https://doi.org/10.1002/med.21706
[2]  Kuijper, E.C., Bergsma, A.J., Pijnappel, W.W.M.P. and Aartsma‐Rus, A. (2020) Opportunities and Challenges for Antisense Oligonucleotide Therapies. Journal of Inherited Metabolic Disease, 44, 72-87.
https://doi.org/10.1002/jimd.12251
[3]  Scoles, D.R., Minikel, E.V. and Pulst, S.M. (2019) Antisense Oligonucleotides: A Primer. Neurology Genetics, 5, e323.
https://doi.org/10.1212/nxg.0000000000000323
[4]  Aymé, S., Kole, A. and Groft, S. (2008) Empowerment of Patients: Lessons from the Rare Diseases Community. The Lancet, 371, 2048-2051.
https://doi.org/10.1016/s0140-6736(08)60875-2
[5]  Dias, N. and Stein, C.A. (2002) Antisense Oligonucleotides: Basic Concepts and Mechanisms. Molecular Cancer Therapeutics, 1, 347-355.
[6]  Lauffer, M.C., van Roon-Mom, W. and Aartsma-Rus, A. (2024) Possibilities and Limitations of Antisense Oligonucleotide Therapies for the Treatment of Monogenic Disorders. Communications Medicine, 4, Article No. 6.
https://doi.org/10.1038/s43856-023-00419-1
[7]  Roberts, T.C., Langer, R. and Wood, M.J.A. (2020) Advances in Oligonucleotide Drug Delivery. Nature Reviews Drug Discovery, 19, 673-694.
https://doi.org/10.1038/s41573-020-0075-7
[8]  Zheng, Y.Y., Wu, Y., Begley, T.J. and Sheng, J. (2021) Sulfur Modification in Natural RNA and Therapeutic Oligonucleotides. RSC Chemical Biology, 2, 990-1003.
https://doi.org/10.1039/d1cb00038a
[9]  Giles, R.V., Spiller, D.G., Clark, R.E. and Tidd, D.M. (1999) Antisense Morpholino Oligonucleotide Analog Induces Missplicing of C-myc mRNA. Antisense and Nucleic Acid Drug Development, 9, 213-220.
https://doi.org/10.1089/oli.1.1999.9.213
[10]  Gryaznov, S.M., Lloyd, D.H., Chen, J.K., Schultz, R.G., DeDionisio, L.A., Ratmeyer, L., et al. (1995) Oligonucleotide N3’-->p5’ Phosphoramidates. Proceedings of the National Academy of Sciences, 92, 5798-5802.
https://doi.org/10.1073/pnas.92.13.5798
[11]  Barresi, V., Musmeci, C., Rinaldi, A. and Condorelli, D.F. (2022) Transcript-Targeted Therapy Based on RNA Interference and Antisense Oligonucleotides: Current Applications and Novel Molecular Targets. International Journal of Molecular Sciences, 23, Article No. 8875.
https://doi.org/10.3390/ijms23168875
[12]  Holm, A., Hansen, S.N., Klitgaard, H. and Kauppinen, S. (2022) Clinical Advances of RNA Therapeutics for Treatment of Neurological and Neuromuscular Diseases. RNA Biology, 19, 594-608.
https://doi.org/10.1080/15476286.2022.2066334
[13]  Stein, C.A. (2001) The Experimental Use of Antisense Oligonucleotides: A Guide for the Perplexed. Journal of Clinical Investigation, 108, 641-644.
https://doi.org/10.1172/jci13885
[14]  Aslesh, T. and Yokota, T. (2020) Development of Antisense Oligonucleotide Gapmers for the Treatment of Huntington’s Disease. In: Yokota, T. and Maruyama, R., Eds., Gapmers: Methods and Protocols, Springer US, 57-67.
https://doi.org/10.1007/978-1-0716-0771-8_4
[15]  Owoyemi, J.O., Traficante, M.K., Bamgboye, M.A., DiSilvestre, D., Vieira, D.C.O. and Dick, I.E. (2022) Antisense Oligonucleotides as a Treatment Strategy for Timothy Syndrome. Biophysical Journal, 121, 99a-100a.
https://doi.org/10.1016/j.bpj.2021.11.2233
[16]  Phillips, M., Costales, J., Lee, R., Oliveira, E. and Burns, A. (2015) Antisense Therapy for Cardiovascular Diseases. Current Pharmaceutical Design, 21, 4417-4426.
https://doi.org/10.2174/1381612821666150803150402
[17]  Benson, M.D., Waddington-Cruz, M., Berk, J.L., Polydefkis, M., Dyck, P.J., Wang, A.K., et al. (2018) Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. New England Journal of Medicine, 379, 22-31.
https://doi.org/10.1056/nejmoa1716793
[18]  Gaudet, D., Alexander, V.J., Baker, B.F., Brisson, D., Tremblay, K., Singleton, W., et al. (2015) Antisense Inhibition of Apolipoprotein C-III in Patients with Hypertriglyceridemia. New England Journal of Medicine, 373, 438-447.
https://doi.org/10.1056/nejmoa1400283
[19]  InSilico Medicine Hong Kong Limited (2022) A Phase 1, Randomized, Double-Blind, Placebo-Controlled, Oral Single and Multiple Ascending Doses, Parallel Group Study to Evaluate the Safety, Tolerability, and Pharmacokinetics of INS018_055 in Healthy Subjects (Clinical Trial Registration No. NCT05154240).
https://clinicaltrials.gov/ct2/show/NCT05154240
[20]  Mombelli, G. and Pavanello, C. (2013) Novel Therapeutic Strategies for the Homozygous Familial Hypercholesterolemia. Recent Patents on Cardiovascular Drug Discovery, 8, 143-150.
https://doi.org/10.2174/15748901112079990001
[21]  Kumar, A., Acharya, A., Nandi, D., Sharma, N. and Chitkara, E. (n.d.) Mipomersen: A Novel Therapeutic Drug for the Treatment of Familial Hypercholesterolemia, Hyperlipidaemia, and Hypercholesterolemia.
[22]  Miller, T., Cudkowicz, M., Shaw, P.J., Andersen, P.M., Atassi, N., Bucelli, R.C., et al. (2020) Phase 1-2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. New England Journal of Medicine, 383, 109-119.
https://doi.org/10.1056/nejmoa2003715
[23]  Singh, R.N. and Singh, N.N. (2018) Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes. In: Sattler, R. and Donnelly, C.J., Eds., RNA Metabolism in Neurodegenerative Diseases, Springer International Publishing, 31-61.
https://doi.org/10.1007/978-3-319-89689-2_2
[24]  Knowles, J.K., Helbig, I., Metcalf, C.S., Lubbers, L.S., Isom, L.L., Demarest, S., et al. (2022) Precision Medicine for Genetic Epilepsy on the Horizon: Recent Advances, Present Challenges, and Suggestions for Continued Progress. Epilepsia, 63, 2461-2475.
https://doi.org/10.1111/epi.17332
[25]  Chi, K.N., Higano, C.S., Blumenstein, B., Ferrero, J., Reeves, J., Feyerabend, S., et al. (2017) Custirsen in Combination with Docetaxel and Prednisone for Patients with Metastatic Castration-Resistant Prostate Cancer (SYNERGY Trial): A Phase 3, Multicentre, Open-Label, Randomised Trial. The Lancet Oncology, 18, 473-485.
https://doi.org/10.1016/s1470-2045(17)30168-7
[26]  Sandweiss, A.J., Brandt, V.L. and Zoghbi, H.Y. (2020) Advances in Understanding of Rett Syndrome and MECP2 Duplication Syndrome: Prospects for Future Therapies. The Lancet Neurology, 19, 689-698.
https://doi.org/10.1016/s1474-4422(20)30217-9
[27]  Cavalieri, S., Pozzi, E., Gatti, R.A. and Brusco, A. (2012) Deep-Intronic ATM Mutation Detected by Genomic Resequencing and Corrected in Vitro by Antisense Morpholino Oligonucleotide (AMO). European Journal of Human Genetics, 21, 774-778.
https://doi.org/10.1038/ejhg.2012.266
[28]  Vega, A.I., Pérez-Cerdá, C., Desviat, L.R., Matthijs, G., Ugarte, M. and Pérez, B. (2009) Functional Analysis of Three Splicing Mutations Identified in the PMM2 Gene: Toward a New Therapy for Congenital Disorder of Glycosylation Type Ia. Human Mutation, 30, 795-803.
https://doi.org/10.1002/humu.20960
[29]  Tsuboi, Y. (2009) Clinical, Pathological, and Genetic Characteristics of Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17 with Mutations in the MAPT and PGRN. Brain and Nerve, 61, 1285-1291.
[30]  Kalbfuss, B., Mabon, S.A. and Misteli, T. (2001) Correction of Alternative Splicing of Tau in Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17. Journal of Biological Chemistry, 276, 42986-42993.
https://doi.org/10.1074/jbc.m105113200
[31]  Peacey, E., Rodriguez, L., Liu, Y. and Wolfe, M.S. (2012) Targeting a Pre-mRNA Structure with Bipartite Antisense Molecules Modulates Tau Alternative Splicing. Nucleic Acids Research, 40, 9836-9849.
https://doi.org/10.1093/nar/gks710
[32]  Mukherjee, S. and Maxfield, F.R. (2004) Lipid and Cholesterol Trafficking in NPC. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1685, 28-37.
https://doi.org/10.1016/j.bbalip.2004.08.009
[33]  Friedman, J.M. (1999) Epidemiology of Neurofibromatosis Type 1. American Journal of Medical Genetics, 89, 1-6.
[34]  Fernández-Rodríguez, J., Castellsagué, J., Benito, L., Benavente, Y., Capellá, G., Blanco, I., et al. (2011) A Mild Neurofibromatosis Type 1 Phenotype Produced by the Combination of the Benign Nature of a Leaky Nf1-Splice Mutation and the Presence of a Complex Mosaicism. Human Mutation, 32, 705-709.
https://doi.org/10.1002/humu.21500
[35]  Castellanos, E., Rosas, I., Solanes, A., Bielsa, I., Lázaro, C., Carrato, C., et al. (2013) Erratum: In Vitro Antisense Therapeutics for a Deep Intronic Mutation Causing Neurofibromatosis Type 2. European Journal of Human Genetics, 22, 153-153.
https://doi.org/10.1038/ejhg.2013.224
[36]  Mancini, C., Vaula, G., Scalzitti, L., Cavalieri, S., Bertini, E., Aiello, C., et al. (2012) Megalencephalic Leukoencephalopathy with Subcortical Cysts Type 1 (MLC1) Due to a Homozygous Deep Intronic Splicing Mutation (c.895-226T > G) Abrogated in Vitro Using an Antisense Morpholino Oligonucleotide. Neurogenetics, 13, 205-214.
https://doi.org/10.1007/s10048-012-0331-z
[37]  Regis, S., Corsolini, F., Grossi, S., Tappino, B., Cooper, D.N. and Filocamo, M. (2013) Restoration of the Normal Splicing Pattern of the PLP1 Gene by Means of an Antisense Oligonucleotide Directed against an Exonic Mutation. PLOS ONE, 8, e73633.
https://doi.org/10.1371/journal.pone.0073633
[38]  Valenzuela, A., Tardiveau, C., Ayuso, M., Buyssens, L., Bars, C., Van Ginneken, C., et al. (2021) Safety Testing of an Antisense Oligonucleotide Intended for Pediatric Indications in the Juvenile Göttingen Minipig, Including an Evaluation of the Ontogeny of Key Nucleases. Pharmaceutics, 13, Article No. 1442.
https://doi.org/10.3390/pharmaceutics13091442
[39]  McDowall, S., Aung-Htut, M., Wilton, S. and Li, D. (2024) Antisense Oligonucleotides and Their Applications in Rare Neurological Diseases. Frontiers in Neuroscience, 18, Article ID: 1414658.
https://doi.org/10.3389/fnins.2024.1414658
[40]  Valenzuela, A., Tardiveau, C., Ayuso, M., Buyssens, L., Bars, C., Van Ginneken, C., et al. (2021) Safety Testing of an Antisense Oligonucleotide Intended for Pediatric Indications in the Juvenile Göttingen Minipig, Including an Evaluation of the Ontogeny of Key Nucleases. Pharmaceutics, 13, Article No. 1442.
https://doi.org/10.3390/pharmaceutics13091442
[41]  Burbano, L.E., Li, M., Jancovski, N., Jafar-Nejad, P., Richards, K., Sedo, A., Soriano, A., Rollo, B., Jia, L. and Gazina, E. (2020) Antisense Oligonucleotide Therapy for KCNT1 Encephalopathy.
[42]  Siva, K., Covello, G. and Denti, M.A. (2014) Exon-Skipping Antisense Oligonucleotides to Correct Missplicing in Neurogenetic Diseases. Nucleic Acid Therapeutics, 24, 69-86.
https://doi.org/10.1089/nat.2013.0461
[43]  Jason, T.L.H., Koropatnick, J. and Berg, R.W. (2004) Toxicology of Antisense Therapeutics. Toxicology and Applied Pharmacology, 201, 66-83.
https://doi.org/10.1016/j.taap.2004.04.017
[44]  Diesbach, P.d. (2000) Identification, Purification and Partial Characterisation of an Oligonucleotide Receptor in Membranes of Hepg2 Cells. Nucleic Acids Research, 28, 868-874.
https://doi.org/10.1093/nar/28.4.868
[45]  Bennett, C.F., Dean, N.M. and Monia, B.P. (1998) Antisense Oligonucleotide. Advances in Drug Discovery Techniques, 173.
[46]  Vaerman, J.L., Moureau, P., Deldime, F., Lewalle, P., Lammineur, C., Morschhauser, F., et al. (1997) Antisense Oligodeoxyribonucleotides Suppress Hematologic Cell Growth through Stepwise Release of Deoxyribonucleotides. Blood, 90, 331-339.
https://doi.org/10.1182/blood.v90.1.331.331_331_339
[47]  Benimetskaya, L. (1997) Formation of a G-Tetrad and Higher Order Structures Correlates with Biological Activity of the Rela (NF-κB p65) “Antisense” Oligodeoxynucleotide. Nucleic Acids Research, 25, 2648-2656.
https://doi.org/10.1093/nar/25.13.2648
[48]  Krieg, A.M. (2004) Antitumor Applications of Stimulating Toll-Like Receptor 9 with CpG Oligodeoxynucleotides. Current Oncology Reports, 6, 88-95.
https://doi.org/10.1007/s11912-004-0019-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133