全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种适用于复合材料层合梁的轻质非线性吸能器
A Light-Weight Nonlinear Energy Absorber Suitable for Composite Laminated Beam

DOI: 10.12677/ojav.2024.124010, PP. 103-117

Keywords: 复合材料结构,轻质非线性吸能器,振动抑制,理论–试验验证
Composite Material Structure
, Light-Weight Nonlinear Energy Absorber, Vibration Suppression, Theoretical-Experimental Validation

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章提出了一种新型的非线性振动控制装置——轻质非线性吸能器(Light-Weight Nonlinear Energy Absorber, LWNEA),旨在解决轻量化复合材料结构的过度振动问题。通过理论分析与试验相结合,验证了LWNEA的减振效果。在理论方面,基于广义哈密顿原理和牛顿第二定律,建立了具有LWNEA的复合材料层合梁的动力学方程,采用伽辽金截断法对这些方程进行解耦。通过谐波平衡法和龙格–库塔法进行了解析和数值求解,两种方法相互印证。讨论了LWNEA在不同激励幅值下的减振效果。在试验方面,通过动力学试验和有限元方法对系统的固有频率进行了分析,验证了理论分析的正确性。此外,还通过试验讨论了LWNEA的减振效果以及加载位置的影响,试验结果与理论结果具有相同的变化趋势。总的来说,这项工作表明LWNEA可以取得显著的减振效果,并且对系统的固有频率影响较小。因此,本研究将为轻量化复合材料结构的振动抑制提供重要的研究思路。
This paper proposes a novel nonlinear vibration control device called the light-weight nonlinear energy absorber (LWNEA). It aims to solve the problem of excessive vibration of light-weight composite structures. The vibration suppression effect of LWNEA is validated by combining theoretical analysis with experiments. In the theoretical field, based on the Hamilton’ principle and the Newton’ second law, the dynamic equations of the composite laminated beam with LWNEA are established. These equations are decoupled by the Galerkin truncation method. The harmonic balance method and the Runge-Kutta method are used for analytical and numerical solutions, and the two methods confirm each other. The vibration suppression effect of LWNEA under different excitation amplitudes is discussed. In the experimental field, the natural frequency of the system is analyzed by dynamic experiments and the finite element method, which validate the correctness of the theoretical analysis. Moreover, the vibration suppression effect and the influence of the loading position of LWNEA are discussed through experiments. The experimental results show the same change trend as the theoretical results. In general, this work shows that LWNEA can achieve a significant vibration suppression effect, and the impact on the natural frequency of the system is small. Therefore, this study will provide an important research idea for vibration suppression of light-weight composite structures.

References

[1]  Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M. and Elharfi, A. (2021) Polymer Composite Materials: A Comprehensive Review. Composite Structures, 262, Article 113640.
https://doi.org/10.1016/j.compstruct.2021.113640

[2]  Prakash, R. (1980) Non-Destructive Testing of Composites. Composites, 11, 217-224.
https://doi.org/10.1016/0010-4361(80)90428-0

[3]  Rohacs, J., Kale, U. and Rohacs, D. (2022) Radically New Solutions for Reducing the Energy Use by Future Aircraft and Their Operations. Energy, 239, Article 122420.
https://doi.org/10.1016/j.energy.2021.122420

[4]  Ricci, F., Monaco, E., Boffa, N.D., Maio, L. and Memmolo, V. (2022) Guided Waves for Structural Health Monitoring in Composites: A Review and Implementation Strategies. Progress in Aerospace Sciences, 129, Article 100790.
https://doi.org/10.1016/j.paerosci.2021.100790

[5]  Yu, F., Zhou, H., Jiang, N., Fang, Y., Song, J., Feng, C., et al. (2020) Flexural Experiment and Capacity Investigation of CFRP Repaired RC Beams under Heavy Pre-Damaged Level. Construction and Building Materials, 230, Article 117030.
https://doi.org/10.1016/j.conbuildmat.2019.117030
[6]  Karama, M., Abou Harb, B., Mistou, S. and Caperaa, S. (1998) Bending, Buckling and Free Vibration of Laminated Composite with a Transverse Shear Stress Continuity Model. Composites Part B: Engineering, 29, 223-234.
https://doi.org/10.1016/s1359-8368(97)00024-3

[7]  Ferreira, F.P.V., Martins, C.H. and De Nardin, S. (2020) Advances in Composite Beams with Web Openings and Composite Cellular Beams. Journal of Constructional Steel Research, 172, Article 106182.
https://doi.org/10.1016/j.jcsr.2020.106182

[8]  Achor, C.H., Kwon, Y.W., Didoszak, J.M., Crow, N.E. and Hardman, D.J. (2022) Study of Air-Backed and Water-Backed Carbon Fiber Composite Plates Subjected to Underwater Shock Loading. Composite Structures, 300, Article 116147.
https://doi.org/10.1016/j.compstruct.2022.116147

[9]  Liang, X., Wang, W., Hu, L. and Feng, P. (2024) Experimental and Numerical Study on High-Temperature Performance of Prestressed CFRP-Reinforced Steel Columns. Engineering Structures, 301, 117347.
https://doi.org/10.1016/j.engstruct.2023.117347

[10]  Nguyen, N., Vo, T.P. and Nguyen, T. (2020) An Improved Shear Deformable Theory for Bending and Buckling Response of Thin-Walled FG Sandwich I-Beams Resting on the Elastic Foundation. Composite Structures, 254, Article 112823.
https://doi.org/10.1016/j.compstruct.2020.112823

[11]  Jin, G., Yang, C. and Liu, Z. (2016) Vibration and Damping Analysis of Sandwich Viscoelastic-Core Beam Using Reddy’s Higher-Order Theory. Composite Structures, 140, 390-409.
https://doi.org/10.1016/j.compstruct.2016.01.017

[12]  Kahya, V. and Turan, M. (2017) Finite Element Model for Vibration and Buckling of Functionally Graded Beams Based on the First-Order Shear Deformation Theory. Composites Part B: Engineering, 109, 108-115.
https://doi.org/10.1016/j.compositesb.2016.10.039

[13]  Kloda, L. and Warminski, J. (2022) Nonlinear Longitudinal-Bending-Twisting Vibrations of Extensible Slowly Rotating Beam with Tip Mass. International Journal of Mechanical Sciences, 220, Article 107153.
https://doi.org/10.1016/j.ijmecsci.2022.107153

[14]  Qu, Y., Long, X., Li, H. and Meng, G. (2013) A Variational Formulation for Dynamic Analysis of Composite Laminated Beams Based on a General Higher-Order Shear Deformation Theory. Composite Structures, 102, 175-192.
https://doi.org/10.1016/j.compstruct.2013.02.032

[15]  Canales, F. and Mantari, J. (2018) Free Vibration of Thick Isotropic and Laminated Beams with Arbitrary Boundary Conditions via Unified Formulation and Ritz Method. Applied Mathematical Modelling, 61, 693-708.
https://doi.org/10.1016/j.apm.2018.05.005

[16]  Kim, S., Kim, K., Ri, M., Paek, Y. and Kim, C. (2021) A Semi-Analytical Method for Forced Vibration Analysis of Cracked Laminated Composite Beam with General Boundary Condition. Journal of Ocean Engineering and Science, 6, 40-53.
https://doi.org/10.1016/j.joes.2020.04.005

[17]  Yurtsever, B., Bab, Y., Kutlu, A. and Dorduncu, M. (2024) A New C0 Continuous Refined Zigzag {1,2} Finite Element Formulation for Flexural and Free Vibration Analyses of Laminated Composite Beams. Composite Structures, 331, Article 117890.
https://doi.org/10.1016/j.compstruct.2024.117890

[18]  Xu, P., Lan, X., Zeng, C., Zhang, X., Liu, Y. and Leng, J. (2023) Dynamic Characteristics and Active Vibration Control Effect for Shape Memory Polymer Composites. Composite Structures, 322, Article 117327.
https://doi.org/10.1016/j.compstruct.2023.117327

[19]  Sareen, A., Hourigan, K. and Thompson, M.C. (2024) Passive Control of Flow-Induced Vibration of a Sphere Using a Trip Wire. Journal of Fluids and Structures, 124, Article 104052.
https://doi.org/10.1016/j.jfluidstructs.2023.104052

[20]  Jiang, G., Wang, Y., Li, F. and Jing, X. (2021) An Integrated Nonlinear Passive Vibration Control System and Its Vibration Reduction Properties. Journal of Sound and Vibration, 509, Article 116231.
https://doi.org/10.1016/j.jsv.2021.116231

[21]  La, V.D. and Nguyen, N.T. (2024) Truly Optimal Semi-Active Damping to Control Free Vibration of a Single Degree of Freedom System. Theoretical and Applied Mechanics Letters, 14, Article 100505.
https://doi.org/10.1016/j.taml.2024.100505

[22]  Kang, Y.K., Park, H.C., Kim, J. and Choi, S. (2002) Interaction of Active and Passive Vibration Control of Laminated Composite Beams with Piezoceramic Sensors/Actuators. Materials & Design, 23, 277-286.
https://doi.org/10.1016/s0261-3069(01)00081-4

[23]  Guo, H., Yang, T., Chen, Y. and Chen, L. (2022) Singularity Analysis on Vibration Reduction of a Nonlinear Energy Sink System. Mechanical Systems and Signal Processing, 173, Article 109074.
https://doi.org/10.1016/j.ymssp.2022.109074

[24]  Lu, Z., Wang, Z., Zhou, Y. and Lu, X. (2018) Nonlinear Dissipative Devices in Structural Vibration Control: A Review. Journal of Sound and Vibration, 423, 18-49.
https://doi.org/10.1016/j.jsv.2018.02.052

[25]  Wang, G., Ding, H. and Chen, L. (2022) Performance Evaluation and Design Criterion of a Nonlinear Energy Sink. Mechanical Systems and Signal Processing, 169, Article 108770.
https://doi.org/10.1016/j.ymssp.2021.108770

[26]  Shahraeeni, M., Sorokin, V., Mace, B. and Ilanko, S. (2022) Effect of Damping Nonlinearity on the Dynamics and Performance of a Quasi-Zero-Stiffness Vibration Isolator. Journal of Sound and Vibration, 526, Article 116822.
https://doi.org/10.1016/j.jsv.2022.116822

[27]  Zhang, Y., Lu, Y., Zhang, W., Teng, Y., Yang, H., Yang, T., et al. (2019) Nonlinear Energy Sink with Inerter. Mechanical Systems and Signal Processing, 125, 52-64.
https://doi.org/10.1016/j.ymssp.2018.08.026

[28]  Zang, J., Zhang, Y., Ding, H., Yang, T. and Chen, L. (2019) The Evaluation of a Nonlinear Energy Sink Absorber Based on the Transmissibility. Mechanical Systems and Signal Processing, 125, 99-122.
https://doi.org/10.1016/j.ymssp.2018.05.061

[29]  Wang, J., Zheng, Y., Ma, Y. and Wang, B. (2024) Experimental Study on Asymmetric and Bistable Nonlinear Energy Sinks Enabled by Side Tracks. Mechanical Systems and Signal Processing, 206, Article 110874.
https://doi.org/10.1016/j.ymssp.2023.110874

[30]  Wang, Z., Zang, J. and Zhang, Y. (2022) Method for Controlling Vibration and Harvesting Energy by Spacecraft: Theory and Experiment. AIAA Journal, 60, 6097-6115.
https://doi.org/10.2514/1.j061998

[31]  Cao, Y., Li, Z., Dou, J., Jia, R. and Yao, H. (2022) An Inerter Nonlinear Energy Sink for Torsional Vibration Suppression of the Rotor System. Journal of Sound and Vibration, 537, Article 117184.
https://doi.org/10.1016/j.jsv.2022.117184

[32]  Li, H., Yao, H., Cao, Y., Jia, R. and Dou, J. (2023) Chiral Metamaterial-Inerter Nonlinear Energy Sink for Torsional Vibration Suppression of the Rotor System. Mechanical Systems and Signal Processing, 200, Article 110640.
https://doi.org/10.1016/j.ymssp.2023.110640

[33]  Xu, K., Niu, M., Zhang, Y., Meng, C. and Chen, L. (2023) A Nonlinear Energy Sink Enhanced by Active Varying Stiffness for Spacecraft Structure: Theory, Simulation, and Experiment. Mechanical Systems and Signal Processing, 204, Article 110787.
https://doi.org/10.1016/j.ymssp.2023.110787

[34]  Özütok, A. and Madenci, E. (2017) Static Analysis of Laminated Composite Beams Based on Higher-Order Shear Deformation Theory by Using Mixed-Type Finite Element Method. International Journal of Mechanical Sciences, 130, 234-243.
https://doi.org/10.1016/j.ijmecsci.2017.06.013

[35]  Bui, X., Nguyen, T., Nguyen, N. and Vo, T.P. (2022) A General Higher-Order Shear Deformation Theory for Buckling and Free Vibration Analysis of Laminated Thin-Walled Composite I-Beams. Composite Structures, 295, Article 115775.
https://doi.org/10.1016/j.compstruct.2022.115775

[36]  Alazwari, M.A., Mohamed, S.A. and Eltaher, M.A. (2022) Vibration Analysis of Laminated Composite Higher Order Beams under Varying Axial Loads. Ocean Engineering, 252, Article 111203.
https://doi.org/10.1016/j.oceaneng.2022.111203

[37]  Wang, Z., Zang, J., Zhang, Z., Song, X., Zhang, Y. and Chen, L. (2024) Nonlinear Broadband Vibration Reduction of Nitinol-Steel Wire Rope: Mechanical Parameters Determination and Theoretical-Experimental Validation. Mechanical Systems and Signal Processing, 213, Article 111345.
https://doi.org/10.1016/j.ymssp.2024.111345

[38]  Tang, Y., Wang, G., Ren, T., Ding, Q. and Yang, T. (2021) Nonlinear Mechanics of a Slender Beam Composited by Three-Directional Functionally Graded Materials. Composite Structures, 270, Article 114088.
https://doi.org/10.1016/j.compstruct.2021.114088

[39]  Zhang, Z., Ding, H., Zhang, Y. and Chen, L. (2021) Vibration Suppression of an Elastic Beam with Boundary Inerter-Enhanced Nonlinear Energy Sinks. Acta Mechanica Sinica, 37, 387-401.
https://doi.org/10.1007/s10409-021-01062-6

[40]  Ding, H., Dowell, E.H. and Chen, L. (2018) Transmissibility of Bending Vibration of an Elastic Beam. Journal of Vibration and Acoustics, 140, Article 031007.
https://doi.org/10.1115/1.4038733

[41]  Chen, L., Li, X., Lu, Z., Zhang, Y. and Ding, H. (2019) Dynamic Effects of Weights on Vibration Reduction by a Nonlinear Energy Sink Moving Vertically. Journal of Sound and Vibration, 451, 99-119.
https://doi.org/10.1016/j.jsv.2019.03.005

[42]  Zhang, Y., Wang, Z., Cao, M., Song, X., Zang, J., Lacarbonara, W., et al. (2023) Vibration Control of Composite Laminate via Nitinol-Steel Wire Ropes: Modeling, Analysis, and Experiment. Mechanical Systems and Signal Processing, 204, Article 110775.
https://doi.org/10.1016/j.ymssp.2023.110775

[43]  Wang, C., Song, X., Zang, J. and Zhang, Y. (2023) Experimental and Theoretical Investigation on Vibration of Laminated Composite Conical-Cylindrical-Combining Shells with Elastic Foundation in Hygrothermal Environment. Composite Structures, 323, Article 117470.
https://doi.org/10.1016/j.compstruct.2023.117470

[44]  Amabili, M. (2018) Nonlinear Damping in Nonlinear Vibrations of Rectangular Plates: Derivation from Viscoelasticity and Experimental Validation. Journal of the Mechanics and Physics of Solids, 118, 275-292.
https://doi.org/10.1016/j.jmps.2018.06.004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133