全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脂肪酶合成糖酯的区域选择性及机制的研究进展
Regioselectivity of Lipase on the Synthesis of Sugar Esters and the Recent Progress of the Mechanistic Study

DOI: 10.12677/isl.2024.84061, PP. 478-488

Keywords: 糖酯,脂肪酶,区域选择性,分子对接,分子模拟,机理
Sugar Esters
, Lipase, Regioselectivity, Molecular Docking, Molecular Modeling, Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

糖–脂肪酸酯(糖酯)是由糖和脂肪酸通过酯化反应生成的表面活性剂,在各行业中有广泛应用。糖酯可通过脂肪酶进行催化反应获得。脂肪酶在不同的条件下对于糖基分子上的羟基具有区域选择性,其催化后的产物结构对于产物的功能有重要影响。本文总结了脂肪酶对于重要糖分子羟基的区域选择性以及不同因素对于区域选择性的影响,并简要描述了分子模拟和分子动力学对于酶催化反应机理的研究方法,以期为行业技术人员为糖酯的应用提供一定的信息,也为酶对于糖的区域选择性的机理研究提供研究思路。
Sugar-fatty acid esters are surfactants that are formed by esterification between sugar and fatty acids. Sugar-fatty acids are widely used in many industries, and they can be synthesized by lipase-catalyzed reactions. The lipase has different regioselectivities on the hydroxyl groups of sugar molecules in different circumstances, and the structures of the esters were essential in determining the functionalities. This article summarizes the regioselectivities of lipase and factors influencing these on some important sugar molecules. Also, the article stated that molecular docking and modeling were used to study the regioselectivities of enzymes. This article can provide information on the selection of sugar esters for some applications and provide insights into the regioselectivity mechanism studies.

References

[1]  Martinez‐Garcia, M., Dejonghe, W., Cauwenberghs, L., Maesen, M., Vanbroekhoven, K. and Satyawali, Y. (2020) Enzymatic Synthesis of Glucose‐ and Xylose Laurate Esters Using Different Acyl Donors, Higher Substrate Concentrations, and Membrane Assisted Solvent Recovery. European Journal of Lipid Science and Technology, 123, Article ID: 2000225.
https://doi.org/10.1002/ejlt.202000225

[2]  Neta, N.D.A.S., Santos, J.C.S.D., Sancho, S.D.O., Rodrigues, S., Gonçalves, L.R.B., Rodrigues, L.R., et al. (2012) Enzymatic Synthesis of Sugar Esters and Their Potential as Surface-Active Stabilizers of Coconut Milk Emulsions. Food Hydrocolloids, 27, 324-331.
https://doi.org/10.1016/j.foodhyd.2011.10.009

[3]  El-Laithy, H.M., Shoukry, O. and Mahran, L.G. (2011) Novel Sugar Esters Proniosomes for Transdermal Delivery of Vinpocetine: Preclinical and Clinical Studies. European Journal of Pharmaceutics and Biopharmaceutics, 77, 43-55.
https://doi.org/10.1016/j.ejpb.2010.10.011

[4]  Khan, N.R. and Rathod, V.K. (2015) Enzyme Catalyzed Synthesis of Cosmetic Esters and Its Intensification: A Review. Process Biochemistry, 50, 1793-1806.
https://doi.org/10.1016/j.procbio.2015.07.014

[5]  Lucarini, S., Fagioli, L., Campana, R., Cole, H., Duranti, A., Baffone, W., et al. (2016) Unsaturated Fatty Acids Lactose Esters: Cytotoxicity, Permeability Enhancement and Antimicrobial Activity. European Journal of Pharmaceutics and Biopharmaceutics, 107, 88-96.
https://doi.org/10.1016/j.ejpb.2016.06.022

[6]  Hsieh, S., Lee, M., Tsai, C., Lai, L., Yeh, T., Hsieh, C., et al. (2015) Enzymatic Synthesis, Purification and Identification of Bioactive Trehalose Ester Derivatives for Health Applications. Food and Bioproducts Processing, 95, 163-172.
https://doi.org/10.1016/j.fbp.2015.05.003

[7]  Puterka, G.J., Farone, W., Palmer, T. and Barrington, A. (2003) Structure-Function Relationships Affecting the Insecticidal and Miticidal Activity of Sugar Esters. Journal of Economic Entomology, 96, 636-644.
https://doi.org/10.1093/jee/96.3.636

[8]  Okabe, S., Suganuma, M., Tada, Y., Ochiai, Y., Sueoka, E., Kohya, H., et al. (1999) Disaccharide Esters Screened for Inhibition of Tumor Necrosis Factor‐α Release Are New Anti‐Cancer Agents. Japanese Journal of Cancer Research, 90, 669-676.
https://doi.org/10.1111/j.1349-7006.1999.tb00799.x

[9]  Ren, K. and Lamsal, B.P. (2017) Synthesis of Some Glucose-Fatty Acid Esters by Lipase from Candida antarctica and Their Emulsion Functions. Food Chemistry, 214, 556-563.
https://doi.org/10.1016/j.foodchem.2016.07.031

[10]  Uppenberg, J., Hansen, M.T., Patkar, S. and Jones, T.A. (1994) The Sequence, Crystal Structure Determination and Refinement of Two Crystal Forms of Lipase B from Candida antarctica. Structure, 2, 293-308.
https://doi.org/10.1016/s0969-2126(00)00031-9

[11]  Anderson, E.M., Larsson, K.M. and Kirk, O. (1998) One Biocatalyst-Many Applications: The Use of Candida antarctica B-Lipase in Organic Synthesis. Biocatalysis and Biotransformation, 16, 181-204.
https://doi.org/10.3109/10242429809003198

[12]  Gonçalves, M.C.P., Cansian, A.B.M., Tardioli, P.W. and Saville, B.A. (2023) Production of Sugars from Mixed Hardwoods for Use in the Synthesis of Sugar Fatty Acid Esters Catalyzed by Immobilized‐Stabilized Derivatives of candida Antarctica Lipase B. Biofuels, Bioproducts and Biorefining, 17, 1236-1250.
https://doi.org/10.1002/bbb.2517

[13]  Bernal, C., Poveda-Jaramillo, J.C. and Mesa, M. (2018) Raising the Enzymatic Performance of Lipase and Protease in the Synthesis of Sugar Fatty Acid Esters, by Combined Ionic Exchange-Hydrophobic Immobilization Process on Aminopropyl Silica Support. Chemical Engineering Journal, 334, 760-767.
https://doi.org/10.1016/j.cej.2017.10.082

[14]  Chaiyaso, T., H-kittikun, A. and Zimmermann, W. (2006) Biocatalytic Acylation of Carbohydrates with Fatty Acids from Palm Fatty Acid Distillates. Journal of Industrial Microbiology & Biotechnology, 33, 338-342.
https://doi.org/10.1007/s10295-005-0073-0

[15]  Sin, Y.M., Cho, K.W. and Lee, T.H. (1998) Synthesis of Fructose Esters by Pseudomonas sp. Lipase in Anhydrous Pyridine. Biotechnology Letters, 20, 91-94.
https://doi.org/10.1023/a:1005399601867

[16]  Scheckermann, C., Schlotterbeck, A., Schmidt, M., Wray, V. and Lang, S. (1995) Enzymatic Monoacylation of Fructose by Two Procedures. Enzyme and Microbial Technology, 17, 157-162.
https://doi.org/10.1016/0141-0229(94)00005-c

[17]  Tracy, P., Dasgupta, D. and More, S. (2023) Challenges and Opportunities for Production of C5 Sugar Fatty Acid Esters (SFAEs) from Renewable Resources. Industrial Crops and Products, 193, Article ID: 116170.
https://doi.org/10.1016/j.indcrop.2022.116170

[18]  Jocquel, C., Muzard, M., Plantier-Royon, R. and Rémond, C. (2021) An Integrated Enzymatic Approach to Produce Pentyl Xylosides and Glucose/xylose Laurate Esters from Wheat Bran. Frontiers in Bioengineering and Biotechnology, 9, Article 647442.
https://doi.org/10.3389/fbioe.2021.647442

[19]  Méline, T., Muzard, M., Deleu, M., Rakotoarivonina, H., Plantier-Royon, R. and Rémond, C. (2018) D-Xylose and L-Arabinose Laurate Esters: Enzymatic Synthesis, Characterization and Physico-Chemical Properties. Enzyme and Microbial Technology, 112, 14-21.
https://doi.org/10.1016/j.enzmictec.2018.01.008

[20]  Ferrer, M., Soliveri, J., Plou, F.J., López-Cortés, N., Reyes-Duarte, D., Christensen, M., et al. (2005) Synthesis of Sugar Esters in Solvent Mixtures by Lipases from Thermomyces lanuginosus and Candida antarctica B, and Their Antimicrobial Properties. Enzyme and Microbial Technology, 36, 391-398.
https://doi.org/10.1016/j.enzmictec.2004.02.009
[21]  Liang, M., Banwell, M.G., Wang, Y. and Lan, P. (2018) Effect of Variations in the Fatty Acid Residue of Lactose Monoesters on Their Emulsifying Properties and Biological Activities. Journal of Agricultural and Food Chemistry, 66, 12594-12603.
https://doi.org/10.1021/acs.jafc.8b05794

[22]  Enayati, M., Gong, Y., Goddard, J.M. and Abbaspourrad, A. (2018) Synthesis and Characterization of Lactose Fatty Acid Ester Biosurfactants Using Free and Immobilized Lipases in Organic Solvents. Food Chemistry, 266, 508-513.
https://doi.org/10.1016/j.foodchem.2018.06.051

[23]  Pedersen, N.R., Wimmer, R., Emmersen, J., Degn, P. and Pedersen, L.H. (2002) Effect of Fatty Acid Chain Length on Initial Reaction Rates and Regioselectivity of Lipase-Catalysed Esterification of Disaccharides. Carbohydrate Research, 337, 1179-1184.
https://doi.org/10.1016/s0008-6215(02)00112-x

[24]  Jia, C., Zhao, J., Feng, B., Zhang, X. and Xia, W. (2010) A Simple Approach for the Selective Enzymatic Synthesis of Dilauroyl Maltose in Organic Media. Journal of Molecular Catalysis B: Enzymatic, 62, 265-269.
https://doi.org/10.1016/j.molcatb.2009.11.003

[25]  Gonzalez-Alfonso, J.L., Casas-Godoy, L., Arrizon, J., Arrieta-Baez, D., Ballesteros, A.O., Sandoval, G., et al. (2018) Lipase-Catalyzed Synthesis of Fatty Acid Esters of Trisaccharides. In: Sandoval, G., Ed., Lipases and Phospholipases, Springer, 287-296.
https://doi.org/10.1007/978-1-4939-8672-9_15

[26]  Li, X., Hai, Y., Ma, D., Chen, J., Banwell, M.G. and Lan, P. (2019) Fatty Acid Ester Surfactants Derived from Raffinose: Synthesis, Characterization and Structure-Property Profiles. Journal of Colloid and Interface Science, 556, 616-627.
https://doi.org/10.1016/j.jcis.2019.08.070

[27]  Campos-Valdez, A.R., Casas-Godoy, L., Sandoval, G., Hernández, L., Sassaki, G.L., Alencar de Menezes, L.R., et al. (2021) Regioselective Synthesis of 6''-O-Lauroyl-1-Kestose and 6'''-O-Lauroylnystose by Sequential Enzymatic Reactions of Transfructosylation and Acylation. Biocatalysis and Biotransformation, 40, 133-143.
https://doi.org/10.1080/10242422.2021.1952192

[28]  Lee, H.Y., Kimura, S. and Iwata, T. (2018) Lipase-catalyzed Regioselective Synthesis of Dextrin Esters. Biomacromolecules, 20, 705-711.
https://doi.org/10.1021/acs.biomac.8b01374

[29]  Riva, S., Chopineau, J., Kieboom, A.P.G. and Klibanov, A.M. (1988) Protease-Catalyzed Regioselective Esterification of Sugars and Related Compounds in Anhydrous Dimethylformamide. Journal of the American Chemical Society, 110, 584-589.
https://doi.org/10.1021/ja00210a045

[30]  Patil, D.R., Rethwisch, D.G. and Dordick, J.S. (1991) Enzymatic Synthesis of a Sucrose‐Containing Linear Polyester in Nearly Anhydrous Organic Media. Biotechnology and Bioengineering, 37, 639-646.
https://doi.org/10.1002/bit.260370706

[31]  An, D., Zhao, X. and Ye, Z. (2015) Enzymatic Synthesis and Characterization of Galactosyl Monoesters. Carbohydrate Research, 414, 32-38.
https://doi.org/10.1016/j.carres.2015.05.011

[32]  Jia, C., Wang, H., Zhang, W., Zhang, X. and Feng, B. (2018) Efficient Enzyme-Selective Synthesis of Monolauryl Mannose in a Circulating Fluidized Bed Reactor. Process Biochemistry, 66, 28-32.
https://doi.org/10.1016/j.procbio.2017.12.002

[33]  Giorgi, V., Botto, E., Fontana, C., Della Mea, L., Vaz, S., Menéndez, P., et al. (2022) Enzymatic Production of Lauroyl and Stearoyl Monoesters of D-Xylose, L-Arabinose, and D-Glucose as Potential Lignocellulosic-Derived Products, and Their Evaluation as Antimicrobial Agents. Catalysts, 12, Article No. 610.
https://doi.org/10.3390/catal12060610

[34]  Du, L. and Luo, X. (2012) Lipase-Catalyzed Regioselective Acylation of Sugar in Microreactors. RSC Advances, 2, 2663-2665.
https://doi.org/10.1039/c2ra01112c

[35]  Sun, P., Chen, Y., Wang, H., Li, J., Gao, J., Wang, H., et al. (2011) Lipase-Catalyzed Synthesis and Characterization of Myristoyl Maltose Ester. European Food Research and Technology, 233, 253-258.
https://doi.org/10.1007/s00217-011-1490-0

[36]  Ji, S., Jia, C., Cao, D., Li, S. and Zhang, X. (2020) Direct and Selective Enzymatic Synthesis of Trehalose Unsaturated Fatty Acid Diesters and Evaluation of Foaming and Emulsifying Properties. Enzyme and Microbial Technology, 136, Article ID: 109516.
https://doi.org/10.1016/j.enzmictec.2020.109516

[37]  Gérard, D., Méline, T., Muzard, M., Deleu, M., Plantier-Royon, R. and Rémond, C. (2020) Enzymatically-Synthesized Xylo-Oligosaccharides Laurate Esters as Surfactants of Interest. Carbohydrate Research, 495, Article ID: 108090.
https://doi.org/10.1016/j.carres.2020.108090

[38]  Ferrer, M., Angeles Cruces, M., Plou, F.J., Bernabé, M. and Ballesteros, A. (2000) A Simple Procedure for the Regioselective Synthesis of Fatty Acid Esters of Maltose, Leucrose, Maltotriose and N-Dodecyl Maltosides. Tetrahedron, 56, 4053-4061.
https://doi.org/10.1016/s0040-4020(00)00319-7

[39]  Nguyen, P.C., Nguyen, M.T.T., Lee, C., Oh, I., Kim, J., Hong, S., et al. (2019) Enzymatic Synthesis and Characterization of Maltoheptaose-Based Sugar Esters. Carbohydrate Polymers, 218, 126-135.
https://doi.org/10.1016/j.carbpol.2019.04.079

[40]  Udomrati, S. and Gohtani, S. (2014) Enzymatic Esterification of Tapioca Maltodextrin Fatty Acid Ester. Carbohydrate Polymers, 99, 379-384.
https://doi.org/10.1016/j.carbpol.2013.07.081

[41]  van Kempen, S.E.H.J., Boeriu, C.G., Schols, H.A., de Waard, P., van der Linden, E. and Sagis, L.M.C. (2013) Novel Surface-Active Oligofructose Fatty Acid Mono-Esters by Enzymatic Esterification. Food Chemistry, 138, 1884-1891.
https://doi.org/10.1016/j.foodchem.2012.09.133

[42]  Adachi, S. and Kobayashi, T. (2005) Synthesis of Esters by Immobilized-Lipase-Catalyzed Condensation Reaction of Sugars and Fatty Acids in Water-Miscible Organic Solvent. Journal of Bioscience and Bioengineering, 99, 87-94.
https://doi.org/10.1263/jbb.99.87

[43]  Arcens, D., Grau, E., Grelier, S., Cramail, H. and Peruch, F. (2020) Impact of Fatty Acid Structure on Calb‐Catalyzed Esterification of Glucose. European Journal of Lipid Science and Technology, 122, Article ID: 1900294.
https://doi.org/10.1002/ejlt.201900294

[44]  Wang, Y.F., Lalonde, J.J., Momongan, M., Bergbreiter, D.E. and Wong, C.H. (1988) Lipase-catalyzed Irreversible Transesterifications Using Enol Esters as Acylating Reagents: Preparative Enantio-and Regioselective Syntheses of Alcohols, Glycerol Derivatives, Sugars and Organometallics. Journal of the American Chemical Society, 110, 7200-7205.
https://doi.org/10.1021/ja00229a041

[45]  Weber, H.K., Stecher, H. and Faber, K. (1995) Sensitivity of Microbial Lipases to Acetaldehyde Formed by Acyl-Transfer Reactions from Vinyl Esters. Biotechnology Letters, 17, 803-808.
https://doi.org/10.1007/bf00129008

[46]  Kamal, M.Z., Yedavalli, P., Deshmukh, M.V. and Rao, N.M. (2013) Lipase in Aqueous‐Polar Organic Solvents: Activity, Structure, and Stability. Protein Science, 22, 904-915.
https://doi.org/10.1002/pro.2271

[47]  Shin, D.W., Mai, N.L., Bae, S. and Koo, Y. (2019) Enhanced Lipase-Catalyzed Synthesis of Sugar Fatty Acid Esters Using Supersaturated Sugar Solution in Ionic Liquids. Enzyme and Microbial Technology, 126, 18-23.
https://doi.org/10.1016/j.enzmictec.2019.03.004

[48]  Ballesteros, A., Plou, F.J., Alcalde, M., Ferrer, M., Garcia‐Arellano, H., Reyes‐Duarte, D., et al. (2008) Cheminform Abstract: Enzymatic Synthesis of Sugar Esters and Oligosaccharides from Renewable Resources. ChemInform, 39, 463-481.
https://doi.org/10.1002/chin.200822240

[49]  Reyes-Duarte, D., López-Cortés, N., Ferrer, M., Plou, F.J. and Ballesteros, A. (2005) Parameters Affecting Productivity in the Lipase-Catalysed Synthesis of Sucrose Palmitate. Biocatalysis and Biotransformation, 23, 19-27.
https://doi.org/10.1080/10242420500071763

[50]  Ferrer, M., Cruces, M.A., Bernabe, M., Ballesteros, A. and Plou, F.J. (1999) Lipase-Catalyzed Regioselective Acylation of Sucrose in Two-Solvent Mixtures. Biotechnology and Bioengineering, 65, 10-16.
https://doi.org/10.1002/(sici)1097-0290(19991005)65:1<10::aid-bit2>3.0.co;2-l

[51]  Yang, Z. and Huang, Z. (2012) Enzymatic Synthesis of Sugar Fatty Acid Esters in Ionic Liquids. Catalysis Science & Technology, 2, 1767-1775.
https://doi.org/10.1039/c2cy20109g

[52]  Kaar, J.L., Jesionowski, A.M., Berberich, J.A., Moulton, R. and Russell, A.J. (2003) Impact of Ionic Liquid Physical Properties on Lipase Activity and Stability. Journal of the American Chemical Society, 125, 4125-4131.
https://doi.org/10.1021/ja028557x

[53]  van Rantwijk, F., Secundo, F. and Sheldon, R.A. (2006) Structure and Activity of Candida antarctica Lipase B in Ionic Liquids. Green Chem., 8, 282-286.
https://doi.org/10.1039/b513062j

[54]  Tariq, M., Carvalho, P.J., Coutinho, J.A.P., Marrucho, I.M., Lopes, J.N.C. and Rebelo, L.P.N. (2011) Viscosity of (C2-C14) 1-Alkyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl)amide Ionic Liquids in an Extended Temperature Range. Fluid Phase Equilibria, 301, 22-32.
https://doi.org/10.1016/j.fluid.2010.10.018

[55]  Lai, J., Li, Z., Lü, Y. and Yang, Z. (2011) Specific Ion Effects of Ionic Liquids on Enzyme Activity and Stability. Green Chemistry, 13, 1860-1868.
https://doi.org/10.1039/c1gc15140a

[56]  Shao, S., Shi, Y., Wu, Y., Bian, L., Zhu, Y., Huang, X., et al. (2018) Lipase-Catalyzed Synthesis of Sucrose Monolaurate and Its Antibacterial Property and Mode of Action against Four Pathogenic Bacteria. Molecules, 23, Article No. 1118.
https://doi.org/10.3390/molecules23051118

[57]  Andler, S.M., Wang, L., Rotello, V.M. and Goddard, J.M. (2017) Influence of Hierarchical Interfacial Assembly on Lipase Stability and Performance in Deep Eutectic Solvent. Journal of Agricultural and Food Chemistry, 65, 1907-1914.
https://doi.org/10.1021/acs.jafc.6b05372

[58]  Park, S. and Kazlauskas, R.J. (2001) Improved Preparation and Use of Room-Temperature Ionic Liquids in Lipase-Catalyzed Enantio-and Regioselective Acylations. The Journal of Organic Chemistry, 66, 8395-8401.
https://doi.org/10.1021/jo015761e

[59]  王哲, 王普, 黄金. 分子模拟技术在脂肪酶性质及催化机理研究中的应用进展[J]. 化工进展, 2013, 32(10): 2475-2479, 2485.
[60]  García-Oliva, C., Perona, A., Rumbero, Á., Hoyos, P. and Hernáiz, M.J. (2022) Enzymatic Synthesis and Molecular Modelling Studies of Rhamnose Esters Using Lipase from Pseudomonas Stutzeri. International Journal of Molecular Sciences, 23, Article 2239.
https://doi.org/10.3390/ijms23042239

[61]  Toledo, M.V., Briand, L.E. and Ferreira, M.L. (2022) A Simple Molecular Model to Study the Substrate Diffusion into the Active Site of a Lipase-Catalyzed Esterification of Ibuprofen and Ketoprofen with Glycerol. Topics in Catalysis, 65, 944-956.
https://doi.org/10.1007/s11244-022-01636-z

[62]  Doerr, M., Romero, A. and Daza, M.C. (2021) Effect of the Acyl-Group Length on the Chemoselectivity of the Lipase-Catalyzed Acylation of Propranolol—A Computational Study. Journal of Molecular Modeling, 27, Article No. 198.
https://doi.org/10.1007/s00894-021-04808-y

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133