|
考虑回收质量和风险值的动力电池逆向物流网络设计
|
Abstract:
随着新能源汽车销售量和保有量的急剧上升,作为新能源汽车中的重要零部件,动力电池也得到了快速发展。在动力电池大量退役背景下,考虑废旧动力电池运输、处理对周围居民的风险、回收处理数量不确定性等因素,以逆向物流成本最小与居民风险最小为目标,构建废旧动力电池逆向物流网络多目标规划模型。运用不确定规划理论引入回收质量的三角模糊数,对模型进行确定性转化。引入决策者偏好系数,采用加权理想点法将多目标模型转化为单目标模型进行求解,通过Lingo18软件计算案例,得到考虑不确定性的逆向物流网络设施的选址、数量以及设施间废旧动力电池流量分配方案,验证模型的可靠性。
With the sharp rise in the sales and ownership of new energy vehicles, as an important part of new energy vehicles, power batteries have also been rapidly developed. Under the background of a large number of decommissioning power batteries, a multi-objective planning model for the reverse logistics network of used power batteries was established with the objective of minimizing the cost of reverse logistics and the risk of residents, considering the risks of transportation and disposal of used power batteries to the surrounding residents and the uncertainties of the quantity of recycling and disposal. The triangular fuzzy number of recovery quality is introduced by the uncertain programming theory to transform the model deterministically. By introducing the decision-maker’s preference coefficient, the weighted ideal point method was used to transform the multi-objective model into a single-objective model for solving the problem. The site selection and quantity of reverse logistics network facilities and the flow distribution scheme of used power batteries between facilities were obtained by calculating cases with Lingo18 software, and the reliability of the model was verified.
[1] | Jiang, T., Sun, J., Wang, T., Tang, Y., Chen, S., Qiu, S., et al. (2021) Sorting and Grouping Optimization Method for Second-Use Batteries Considering Aging Mechanism. Journal of Energy Storage, 44, Article ID: 103264. https://doi.org/10.1016/j.est.2021.103264 |
[2] | Sato, F.E.K. and Nakata, T. (2019) Recoverability Analysis of Critical Materials from Electric Vehicle Lithium-Ion Batteries through a Dynamic Fleet-Based Approach for Japan. Sustainability, 12, Article No. 147. https://doi.org/10.3390/su12010147 |
[3] | 贾志杰, 高峰, 杜世伟, 等. 磷酸铁锂电池不同应用场景的生命周期评价[J]. 中国环境科学, 2022, 42(4): 1975-1984. |
[4] | Govindan, K., Fattahi, M. and Keyvanshokooh, E. (2017) Supply Chain Network Design under Uncertainty: A Comprehensive Review and Future Research Directions. European Journal of Operational Research, 263, 108-141. https://doi.org/10.1016/j.ejor.2017.04.009 |
[5] | 李文玉. 动力电池逆向物流网络优化研究[D]: [硕士学位论文]. 北京: 华北电力大学, 2018. |
[6] | 丁艳, 梁宝平. 基于第三方企业回收的再制造品逆向物流网络设计[J]. 物流科技, 2018, 41(1): 98-100. |
[7] | 郭雪婷. 不确定环境下再制造逆向物流网络设计研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2019. |
[8] | 张群, 卫李蓉. 逆向物流网络设计研究进展[J]. 中国管理科学, 2016, 24(9): 165-176. |
[9] | 刘娟娟, 郭炎可. 考虑不确定性的电动汽车动力电池逆向物流网络设计[J]. 上海海事大学报, 2021, 42(2): 96-102. |
[10] | 范志强, 罗一帆, 梁宁宁, 等. 动力电池逆向物流网络多目标设计: 风险优化与求解分析[J]. 重庆理工大学学报(自然科学), 2023, 37(11): 333-342. |
[11] | 丁于思, 李雪, 高阳. 多周期多目标再制造物流网络设施动态选址研究[J]. 管理学报, 2014, 11(3): 428-433. |
[12] | 岳辉, 钟学燕, 叶怀珍. 随机环境下再制造逆向物流网络优化设计[J]. 中国机械工程, 2007, 18(4): 442-446. |
[13] | 李雨晴. T公司废旧动力电池逆向物流网络设计研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2021. |