|
地埋管群换热系统传热机制及耦合作用关系
|
Abstract:
地埋管群换热系统的布管设计还没有形成标准化的方法体系,制约着其能效和可靠性。通过现场试验、数值模拟和理论分析等方法,构建精细化的三维有限元数值分析模型,捕捉地埋管群换热系统的温度场演化特征和换热功率变化过程,揭示布管形式和埋管间距对换热系统传热过程的作用机制和耦合关系。结果显示:以地埋管为中心,地埋管群换热系统在横向断面上形成温度极值区,在纵向断面上形成温度极值条带和温度异常区;相较于顺序排列地埋管群,交叉排列地埋管群的温度极值区、极值条带更容易发生连通,温度异常区更发育;随着埋管间距的增加,地埋管群的温度极值区、极值条带更独立,温度异常区更不发育。确定了布管形式和埋管间距对地埋管群换热功率的耦合作用关系:布管形式对不同埋管间距条件下换热功率的差距产生显著的影响;埋管间距会导致不同布管形式条件下换热功率的差异发生明显的变化。研究成果对于地埋管群换热系统设计方法体系的建设具有重要价值。
There is no standard method system for pipe arrangement design of ground pipe group heat exchange system (GPG-HES), which has restricted the energy efficiency and reliability of GPG-HES. Elaborative 3-dimensional finite element numerical analysis model of GPG-HES was structed, temperature evolution features and heat exchange power changing process of GPH-HES was captured, and action mechanism and coupled action relations of pipe arrange pattern and pipe spacing to the heat transfer process of GPG-HES was revealed, based on in-site test, numerical simulation and theoretical analysis. Results shown: Temperature extremum regions was formed on transverse section of GPG-HES, temperature extremum strips and temperature abnormal area were formed on longitudinal section of GPG-HES, centered on buried piles; compared with sequenced buried pipe group, temperature extremum regions and strips of interleaved buried pipe group are more likely to connected, and temperature abnormal area are more active; as the pipe spacing increases, temperature extremum regions and strips are more isolated, and temperature abnormal area is less active. Coupled action relations of pipe arrangement pattern and buried pipe spacing to GPG-HES was ascertained: pipe arrangement pattern markedly affects the difference of heat exchange power under different pipe spacing; pipe spacing causes obvious change to difference of heat exchange power under different pipe arrangement pattern. Study fruit is of great value to the design method system of GPG-HES.
[1] | Javadi, H., Mousavi Ajarostaghi, S.S., Pourfallah, M. and Zaboli, M. (2019) Performance Analysis of Helical Ground Heat Exchangers with Different Configurations. Applied Thermal Engineering, 154, 24-36. https://doi.org/10.1016/j.applthermaleng.2019.03.021 |
[2] | 郭红仙, 王天麟, 程晓辉, 等. 地源热泵系统长期稳定性及运行策略案例研究[J]. 清华大学学报(自然科学版), 2024, 64(5): 801-809. |
[3] | 张远艳. 基于分层换热模型的基岩地区地埋管换热特性研究[D]: [硕士学位论文]. 重庆: 重庆交通大学, 2019.. |
[4] | Liu, X., Zhang, G., Wu, R., Chen, P., Guo, J. and Wan, J. (2024) Performance of Thermally Enhanced Backfill Material in Vertical Ground Heat Exchangers under Continuous Operation in a Cooling Season. Applied Thermal Engineering, 257, Article 124442. https://doi.org/10.1016/j.applthermaleng.2024.124442 |
[5] | 王涛, 朱照亮, 魏善明, 等. 地埋管热泵换热系统热影响半径分析[J]. 地质学报, 2019, 93(S1): 226-232. |
[6] | Zhou, H., Lv, J. and Li, T. (2016) Applicability of the Pipe Structure and Flow Velocity of Vertical Ground Heat Exchanger for Ground Source Heat Pump. Energy and Buildings, 117, 109-119. https://doi.org/10.1016/j.enbuild.2016.02.028 |
[7] | Cui, P., Zhang, W., Liu, R., Lu, L. and Jia, L. (2024) Analytical Model Development for Vertical Medium/Deep Ground Heat Exchangers with U-Tube(s). International Communications in Heat and Mass Transfer, 159, Article 107969. https://doi.org/10.1016/j.icheatmasstransfer.2024.107969 |
[8] | 张波, 詹睿, 刘浪, 等. 深部矿井水平方螺旋形埋管充填体换热器及其耦合热泵系统性能研究[J]. 工程科学学报, 2022, 44(10): 1719-1732. |
[9] | Hasan, N., Ali, M.H., Pratik, N.A., Lubaba, N. and Miyara, A. (2024) Improving the Thermal Performance of Vertical Ground Heat Exchanger by Modifying Spiral Tube Geometry: A Numerical Study. Heliyon, 10, e35718. https://doi.org/10.1016/j.heliyon.2024.e35718 |
[10] | 滕剑波. 基于渗流条件下地埋管换热器及热泵系统性能分析与研究[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2023. |
[11] | 沈春明, 周鹏坤, 王雅然, 等. 大型地埋管群长期传热特性仿真建模分析方法[J/OL]. 应用基础与工程科学学报, 1-26. http://kns.cnki.net/kcms/detail/11.3242.TB.20241119.1716.005.html, 2024-11-22. |
[12] | 欧阳继胜, 关科扬, 洪浩, 等. 地埋管换热器实际性能反演模型的建立及应用[J]. 建筑科学, 2023, 39(8): 272-278, 285. |
[13] | 令兰宁, 姚尔人, 孙昊, 等. 中深层地热能同轴套管换热器储能发电系统热力学性能分析[J]. 西安交通大学学报, 2024, 58(1): 126-137. |
[14] | 杨永健. 西安地区GSHP地埋管换热关键影响因素测试[J]. 中国煤炭地质, 2023, 35 10): 58-62. |
[15] | 张志尧, 孙林娜, 魏俊辉, 等. 基于恒热流法和恒温法的岩土热物性试验分析研究[J]. 建筑节能(中英文), 2024, 52(7): 22-28. |
[16] | 戴刚, 赵文文, 杨帆, 等. 耦合固体场传热三维缝隙气动热数值计算[J/OL]. 航空动力学报, 1-10. https://doi.org/10.13224/j.cnki.jasp.20230006, 2024-08-26. |
[17] | 海笑, 姜文全, 高月, 等. 超临界甲烷在矩形通道内传热特性研究[J]. 低温工程, 2024(3): 28-37. |