Increase of Tc in Al1?x(SiO2)x cermets with increasing x is caused by electron transfer from the Al grains to the SiO2 phase occupying surface states, expressed by
(*), where n is the electron density in the Al phase and
a characteristic parameter. Decrease of Tc in Pb-Cu-sandwiches is attributed to the electron transfer from the Cu film to the Pb film.
and
in equation (*) stands for the influence of the electron-phonon interaction and
for the influence of the electron-electron Coulomb repulsion on Tc. The result that equation (*) holds for both hole-doped cuprate high-temperature superconductivity (HTSC) and Al1?x(SiO2)x cermets is an important indication that common mechanisms underlie HTSC and classical superconductors. The difference between the two is that in HTSC, electron transfer occurs between different electronic bands, but in Al1?x(SiO2)x cermets between different phases.
References
[1]
Bednorz, J.G. and Müller, K.A. (1986) Possible Hight Tc Superconductivity in the Ba-La-Cu-O System. Zeitschrift für Physik B Condensed Matter, 64, 189-193. https://doi.org/10.1007/bf01303701
[2]
Sonntag, J. (2024) High-Temperature Superconductivity—An Electron Transfer Phenomenon. World Journal of Condensed Matter Physics, 14, 67-76. https://doi.org/10.4236/wjcmp.2024.144007
[3]
Abeles, B. (1976) Granular Metal Films. Applied Solid State Science, 6, 1-117. https://doi.org/10.1016/b978-0-12-002906-8.50007-x
[4]
Buckel, W. and Kleiner, R. (2004) Supraleitung: Grundlagen und Anwendung. 6th Edition, Wiley-VCH.
[5]
Sonntag, J. (2023) The Influence of Phase Separation on Structure and Electronic Transport in Solid-State Physics. Cambridge Scholars Publishing. https://www.cambridgescholars.com/product/978-1-4438-5723-9
[6]
Sonntag, J. (1989) Disordered Electronic Systems: Concentration Dependence of the dc Conductivity in Amorphous Transition-Metal-Metalloid Alloys (Metallic Regime). Physical Review B, 40, 3661-3671. https://doi.org/10.1103/physrevb.40.3661
[7]
Smolyaninova, V.N., Zander, K., Gresock, T., Jensen, C., Prestigiacomo, J.C., Osofsky, M.S., et al. (2015) Using Metamaterial Nanoengineering to Triple the Superconducting Critical Temperature of Bulk Aluminum. Scientific Reports, 5, Article No. 15777. https://doi.org/10.1038/srep15777
[8]
Landauer, R. (1952) The Electrical Resistance of Binary Metallic Mixtures. Journal of Applied Physics, 23, 779-784. https://doi.org/10.1063/1.1702301
[9]
Odelevskii, V.I. (1951) Calculation of the Generalized Conductivity of Heterogeneous Systems. Journal of Technical Physics (USSR), 21, 678-685.
[10]
Kirejew, P.S. (1974) Physik der Halbleiter. Akademie-Verlag.
[11]
Hilsch, P. (1962) Zum Verhalten von Supraleitern im Kontakt mit Normalleitern. Zeitschrift für Physik, 167, 511-524. https://doi.org/10.1007/bf01378178
[12]
Frydman, A. (2002) The Proximity Effect in Systems of Ultrasmall Superconducting Grains. Physica Status Solidi (B), 230, 127-131. https://doi.org/10.1002/1521-3951(200203)230:1%3C127::AID-PSSB127%3E3.0.CO;2-%23
[13]
Smith, P.H., Shapiro, S., Miles, J.L. and Nicol, J. (1961) Superconducting Characteristics of Superimposed Metal Films. Physical Review Letters, 6, 686-688. https://doi.org/10.1103/physrevlett.6.686