Preclinical Evaluation of the Antidiabetic Effect and Phytochemical HPLC-MS ESI-QTOF Analysis of Sclerocaryabirrea (A. Rich) Hoscht Bark of Trunk Aqueous Extract in Alloxan-Induced Diabetic Wistar Rat
Introduction: Diabetes is a serious public health problem requiring complex treatment. Numerous ethnopharmacological studies have reported the traditional use of Sclerocaryabirrea in managing diabetic patients. This study aims to demonstrate, preclinically, the antidiabetic effects of the aqueous decoction of S.birrea trunk bark. Methods: Phytochemical analysis was performed by HPLC-MS. The effects of the extracts (Sb5 and Sb25) and 0.9% NaCl on the normal blood glucose levels of the animals were determined. Diabetes induction was performed intraperitoneally by administering a single dose of alloxan (150 mg/kg) in normoglycemic rats. The antidiabetic effects of the extracts (Allox + Sb5, Allox + Sb25) and glibenclamide (Allox + Glib5) were determined in Alloxan-induced diabetic animals for four weeks. Results: Interpretation of mass spectra obtained by HPLC-MS allowed the tentative identification of vanillic acid-4-sulfate and rhamnetin in Sb extract. Investigated doses of Sb extract showed an antidiabetic impact similar to the reference, glibenclamide, with a return to normal blood glucose in all treated rats only after 4 days of treatment. Furthermore, Sb extract treatments reduced weight loss in diabetic rats. Sb had no negative impact on the balance of total cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Conclusion: The present study demonstrated the antidiabetic efficacy and, to some extent, the beneficial effects of Sb extract on Alloxan-induced diabetic rats’ health. Detection of antidiabetic phytochemicals such as vanillic acid-4-sulfate and rhamnetin would justify this pharmacological property of the aqueous decoction of S.birrea trunk bark.
References
[1]
Sreenivasamurthy, L. (2021) Evolution in Diagnosis and Classification of Diabetes. Journal of Diabetes Mellitus, 11, 200-207. https://doi.org/10.4236/jdm.2021.115017
[2]
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. https://doi.org/10.1016/j.diabres.2021.109119
[3]
Amegan, N.H., Amidou, A.S., Houehanou, C.Y., Robin, H., Gbaguidi, G.N., Fassinou, C.A.L., et al. (2022) Prevalence and Factors Associated with Hyperglycemia in a Rural Population of Tanvè and Dékanmey in Benin in 2019. PLOS Global Public Health, 2, e0000471. https://doi.org/10.1371/journal.pgph.0000471
[4]
World Health Organization (2006) Noncommunicable Diseases and Mental Health Cluster. STEPS: L’approche STEPwise de l’OMS pour la surveillance des facteurs de risque des maladies chroniques: Manuel de surveillance STEPS de l’OMS. Approche STEPwise de l’OMS pour la surveillance des facteurs de risque des maladies chroniques. Manuel de Surveillance STEPS de l’OMS.
[5]
Séré, L., Tiéno, H., Yanogo, D., et al. (2021) [Prevalence of Diabetes and Diabetes-Related Cardiovascular Risk Factors in a Rural Population in Burkina Faso]. MedecineTropicale et Sante Internationale, 1, B1J8-7K63.
[6]
Forray, A.I., Coman, M.A., Simonescu-Colan, R., Mazga, A.I., Cherecheș, R.M. and Borzan, C.M. (2023) The Global Burden of Type 2 Diabetes Attributable to Dietary Risks: Insights from the Global Burden of Disease Study 2019. Nutrients, 15, Article 4613. https://doi.org/10.3390/nu15214613
[7]
Hirano, T. (2018) Pathophysiology of Diabetic Dyslipidemia. Journal of Atherosclerosis and Thrombosis, 25, 771-782. https://doi.org/10.5551/jat.rv17023
[8]
Moucheraud, C., Lenz, C., Latkovic, M. and Wirtz, V.J. (2019) The Costs of Diabetes Treatment in Low-and Middle-Income Countries: A Systematic Review. BMJ Global Health, 4, e001258. https://doi.org/10.1136/bmjgh-2018-001258
[9]
Alam, S., Dhar, A., Hasan, M., Richi, F.T., Emon, N.U., Aziz, M.A., et al. (2022) Antidiabetic Potential of Commonly Available Fruit Plants in Bangladesh: Updates on Prospective Phytochemicals and Their Reported Moas. Molecules, 27, Article 8709. https://doi.org/10.3390/molecules27248709
[10]
Lee, J., Noh, S., Lim, S. and Kim, B. (2021) Plant Extracts for Type 2 Diabetes: From Traditional Medicine to Modern Drug Discovery. Antioxidants, 10, Article 81. https://doi.org/10.3390/antiox10010081
[11]
Ojewole, J.A.O. (2004) Evaluation of the Analgesic, Anti-Inflammatory and Anti-Diabetic Properties of Sclerocaryabirrea (A. Rich.) Hochst. Stem-Bark Aqueous Extract in Mice and Rats. Phytotherapy Research, 18, 601-608. https://doi.org/10.1002/ptr.1503
[12]
Majeed, M., Mundkur, L., Paulose, S. and Nagabhushanam, K. (2022) Novel Emblica officinalis Extract Containing Β-Glucogallin vs. Metformin: A Randomized, Open-Label, Comparative Efficacy Study in Newly Diagnosed Type 2 Diabetes Mellitus Patients with Dyslipidemia. Food & Function, 13, 9523-9531. https://doi.org/10.1039/d2fo01862d
[13]
Mahdizadehdehosta, R., Shahbazmohammadi, H., Moein, S., Soltani, N., Malekzadeh, K. and Moein, M. (2024) Effects of Salvia Mirzayanii Extract Administration on Hyperglycemia Improvement in Diabetic Rats: The Role of GLUT4, PEPCK and G6pase Genes. Heliyon, 10, e25256. https://doi.org/10.1016/j.heliyon.2024.e25256
[14]
Zolotova, D., Teterovska, R., Bandere, D., Lauberte, L. and Niedra, S. (2024) Antidiabetic Properties of the Root Extracts of Dandelion (Taraxacum officinale) and Burdock (Arctium Lappa). Plants, 13, Article 1021. https://doi.org/10.3390/plants13071021
[15]
Djientcheu Tientcheu, J.P., Ngueguim Tsofack, F., Gounoue, R.K., Fifen, R.N., Dzeufiet, P.D.D. and Dimo, T. (2023) The Aqueous Extract of Sclerocaryabirrea, Nauclea latifolia, and Piper longum Mixture Protects Striatal Neurons and Movement-Associated Functionalities in a Rat Model of Diabetes-Induced Locomotion Dysfunction. Evidence-Based Complementary and Alternative Medicine, 2023, Article ID: 7865919. https://doi.org/10.1155/2023/7865919
[16]
Diniz, S.F., Amorim, F.P.L.G., Cavalcante-Neto, F.F., Bocca, A.L., Batista, A.C., Simm, G.E.P.M., et al. (2008) Alloxan-Induced Diabetes Delays Repair in a Rat Model of Closed Tibial Fracture. Brazilian Journal of Medical and Biological Research, 41, 373-379. https://doi.org/10.1590/s0100-879x2008005000014
[17]
Banda, M., Nyirenda, J., Muzandu, K., Sijumbila, G. and Mudenda, S. (2018) Antihyperglycemic and Antihyperlipidemic Effects of Aqueous Extracts of Lannea edulis in Alloxan-Induced Diabetic Rats. Frontiers in Pharmacology, 9, Article 1099. https://doi.org/10.3389/fphar.2018.01099
[18]
Pearson, E.R. (2019) Type 2 Diabetes: A Multifaceted Disease. Diabetologia, 62, 1107-1112. https://doi.org/10.1007/s00125-019-4909-y
[19]
Shitomi-Jones, L.M., Akam, L., Hunter, D., Singh, P. and Mastana, S. (2023) Genetic Risk Scores for the Determination of Type 2 Diabetes Mellitus (T2DM) in North India. International Journal of Environmental Research and Public Health, 20, Article 3729. https://doi.org/10.3390/ijerph20043729
[20]
Sugandh, F., Chandio, M., Raveena, F., Kumar, L., Karishma, F., Khuwaja, S., et al. (2023) Advances in the Management of Diabetes Mellitus: A Focus on Personalized Medicine. Cureus, 15, e43697. https://doi.org/10.7759/cureus.43697
[21]
Serowik, T.C. and Pantalone, K.M. (2023) The Evolution of Type 2 Diabetes Management: Glycemic Control and Beyond with SGLT-2 Inhibitors and GLP-1 Receptor Agonists. Journal of Osteopathic Medicine, 124, 127-135. https://doi.org/10.1515/jom-2023-0179
[22]
Neuen, B.L., Heerspink, H.J.L., Vart, P., Claggett, B.L., Fletcher, R.A., Arnott, C., et al. (2024) Estimated Lifetime Cardiovascular, Kidney, and Mortality Benefits of Combination Treatment with SGLT2 Inhibitors, GLP-1 Receptor Agonists, and Nonsteroidal MRA Compared with Conventional Care in Patients with Type 2 Diabetes and Albuminuria. Circulation, 149, 450-462. https://doi.org/10.1161/circulationaha.123.067584
[23]
Tomlinson, B., Li, Y. and Chan, P. (2022) Evaluating Gliclazide for the Treatment of Type 2 Diabetes Mellitus. Expert Opinion on Pharmacotherapy, 23, 1869-1877. https://doi.org/10.1080/14656566.2022.2141108
[24]
Shalaeva, E.V., Bano, A., Kasimov, U., Janabaev, B., Laimer, M. and Saner, H. (2023) Impact of Persistent Medication Adherence and Compliance with Lifestyle Recommendations on Major Cardiovascular Events and One-Year Mortality in Patients with Type 2 Diabetes and Advanced Stages of Atherosclerosis: Results from a Prospective Cohort Study. Global Heart, 18, Article 61. https://doi.org/10.5334/gh.1273
[25]
Willcox, M.L., Elugbaju, C., Al-Anbaki, M., Lown, M. and Graz, B. (2021) Effectiveness of Medicinal Plants for Glycaemic Control in Type 2 Diabetes: An Overview of Meta-Analyses of Clinical Trials. Frontiers in Pharmacology, 12, Article 777561. https://doi.org/10.3389/fphar.2021.777561
[26]
Mills, K.T., Bundy, J.D., Kelly, T.N., Reed, J.E., Kearney, P.M., Reynolds, K., et al. (2016) Global Disparities of Hypertension Prevalence and Control. Circulation, 134, 441-450. https://doi.org/10.1161/circulationaha.115.018912
[27]
Belemnaba, L., Sawadogo, B., Ouedraogo, W.R.C., Nitiéma, M., Kaboré, B., Koala, M., et al. (2024) Acute Toxicity, Antioxidant and Vasodilatory Properties of Sclerocaryabirrea (A. Rich.) Hochst (Anacardiaceae) Trunk Bark’s Aqueous Decoction. Journal of Advances in Medical and Pharmaceutical Sciences, 26, 1-19. https://doi.org/10.9734/jamps/2024/v26i8704
[28]
Coulidiaty, A.G.V., Boni, S.I., Ouedraogo, R., Koama, B., Soré, H., Meda, R.N., et al. (2024) Acute and Chronic Oral Toxicity of Hydroethanolic Extract of Sclerocaryabirrea (Anacardiaceae) in Wistar Rats. Journal of Experimental Pharmacology, 16, 231-242. https://doi.org/10.2147/jep.s467920
[29]
Terayama, Y., Kodama, Y., Matsuura, T. and Ozaki, K. (2017) Acute Alloxan Renal Toxicity in the Rat Initially Causes Degeneration of Thick Ascending Limbs of Henle. Journal of Toxicologic Pathology, 30, 7-13. https://doi.org/10.1293/tox.2016-0035
[30]
Zhang, L., Terayama, Y., Nishimoto, T., Kodama, Y. and Ozaki, K. (2016) Acute Alloxan Toxicity Causes Granulomatous Tubulointerstitial Nephritis with Severe Mineralization. Journal of Toxicologic Pathology, 29, 261-264. https://doi.org/10.1293/tox.2016-0017
[31]
Jensen, V.F.H., Mølck, A., Chapman, M., Alifrangis, L., Andersen, L., Lykkesfeldt, J., et al. (2017) Chronic Hyperinsulinaemic Hypoglycaemia in Rats Is Accompanied by Increased Body Weight, Hyperleptinaemia, and Decreased Neuronal Glucose Transporter Levels in the Brain. International Journal of Endocrinology, 2017, Article ID: 7861236. https://doi.org/10.1155/2017/7861236
[32]
Grant, C.W., Moran-Paul, C.M., Duclos, S.K., Guberski, D.L., Arreaza-Rubín, G. and Spain, L.M. (2013) Testing Agents for Prevention or Reversal of Type 1 Diabetes in Rodents. PLOS ONE, 8, e72989. https://doi.org/10.1371/journal.pone.0072989
[33]
Maharaj, V., Ezeofor, C.C., Naidoo Maharaj, D., Muller, C.J.F. and Obonye, N.J. (2022) Identification of Antidiabetic Compounds from the Aqueous Extract of Sclerocaryabirrea Leaves. Molecules, 27, Article 8095. https://doi.org/10.3390/molecules27228095
[34]
Shakuri Yasin, Y., Sajid Hashim, W. and Mohammed Qader, S. (2022) Evaluation of Metformin Performance on Alloxan-Induced Diabetic Rabbits. Journal of Medicine and Life, 15, 405-407. https://doi.org/10.25122/jml-2021-0417
[35]
Dhanabal, S., Maithili, V., Mahendran, S. and Vadivelan, R. (2011) Antidiabetic Activity of Ethanolic Extract of Tubers of Dioscorea Alata in Alloxan Induced Diabetic Rats. Indian Journal of Pharmacology, 43, 455-459. https://doi.org/10.4103/0253-7613.83121
[36]
Ahangarpour, A. and Oroojan, A.A. (2022) Myricitrin and Its Solid Lipid Nanoparticle Increase Insulin Secretion and Content of Isolated Islets from the Pancreas of Male Mice. Brazilian Journal of Pharmaceutical Sciences, 58, e20065. https://doi.org/10.1590/s2175-97902022e20065
[37]
Yin, P., Wang, Y., Yang, L., Sui, J. and Liu, Y. (2018) Hypoglycemic Effects in Alloxan-Induced Diabetic Rats of the Phenolic Extract from Mongolian Oak Cups Enriched in Ellagic Acid, Kaempferol and Their Derivatives. Molecules, 23, Article 1046. https://doi.org/10.3390/molecules23051046
[38]
Dey, P. (2019) Gut Microbiota in Phytopharmacology: A Comprehensive Overview of Concepts, Reciprocal Interactions, Biotransformations and Mode of Actions. Pharmacological Research, 147, Article ID: 104367. https://doi.org/10.1016/j.phrs.2019.104367
[39]
Manhivi, V.E., Slabbert, R.M. and Sivakumar, D. (2022) Co-Ingestion of Natal Plums (Carissa macrocarpa) and Marula Nuts (Sclerocaryabirrea) in a Snack Bar and Its Effect on Phenolic Compounds and Bioactivities. Molecules, 27, Article 310. https://doi.org/10.3390/molecules27010310
[40]
Rama, H., Ndaba, B., Maaza, M., Dhlamini, M.S., Cochrane, N. and Roopnarain, A. (2023) Effect of Extraction Methods on Phytochemical Constituents and Antioxidant Activity of De-Kernelled Sclerocaryabirrea Seeds. Journal of the Science of Food and Agriculture, 103, 7757-7763. https://doi.org/10.1002/jsfa.12865
[41]
Khamchan, A., Paseephol, T. and Hanchang, W. (2018) Protective Effect of Wax Apple (Syzygiumsamarangense (blume) Merr. & L.M. Perry) against Streptozotocin-Induced Pancreatic Ss-Cell Damage in Diabetic Rats. Biomedicine & Pharmacotherapy, 108, 634-645. https://doi.org/10.1016/j.biopha.2018.09.072
[42]
Makari-Judson, G., Viskochil, R., Katz, D., Barham, R. and Mertens, W.C. (2022) Insulin Resistance and Weight Gain in Women Treated for Early Stage Breast Cancer. Breast Cancer Research and Treatment, 194, 423-431. https://doi.org/10.1007/s10549-022-06624-1
[43]
Goïta, Y., de la Barca, J.M.C., Keita, A., Diarra, M.B., Dembélé, K.C., Dramé, B.S.I., et al. (2020) Analyse biochimique multi-paramétrique révélant une augmentation de l’homocystéinémie et du NT-ProBNP chez les patients hypertendus à Bamako (Mali). Pan African Medical Journal, 35, Article 10. https://doi.org/10.11604/pamj.2020.35.10.18821
[44]
Mallhi, I.Y., Sohaib, M., Khan, A.U. and Rabbani, I. (2023) Antidiabetic, Antioxidative and Antihyperlipidemic Effects of Strawberry Fruit Extract in Alloxan-Induced Diabetic Rats. Foods, 12, Article 2911. https://doi.org/10.3390/foods12152911
[45]
Rasheed, M.U., Naqvi, S.A.R., Rasool, N., Shah, S.A.A. and Zakaria, Z.A. (2022) Antidiabetic and Cytotoxic Evaluation of Phlomisstewartii Plant Phytochemicals on Cigarette Smoke Inhalation and Alloxan-Induced Diabetes in Wistar Rats. Metabolites, 12, Article 1133. https://doi.org/10.3390/metabo12111133
[46]
Singh, R., Gholipourmalekabadi, M. and Shafikhani, S.H. (2024) Animal Models for Type 1 and Type 2 Diabetes: Advantages and Limitations. Frontiers in Endocrinology, 15, Article 1359685. https://doi.org/10.3389/fendo.2024.1359685
[47]
Kasprzyk, R. and Jemielity, J. (2021) Enzymatic Assays to Explore Viral mRNA Capping Machinery. ChemBioChem, 22, 3236-3253. https://doi.org/10.1002/cbic.202100291
[48]
Ajiboye, B.O., Oyinloye, B.E., Agboinghale, P.E., Onikanni, S.A., Asogwa, E. and Kappo, A.P. (2019) Antihyperglycaemia and Related Gene Expressions of Aqueous Extract of Gongronemalatifolium Leaf in Alloxan-Induced Diabetic Rats. Pharmaceutical Biology, 57, 604-611. https://doi.org/10.1080/13880209.2019.1657907
[49]
Aleem, A., Shahnaz, S., Javaid, S., Ashraf, W., Rasool, M.F., Ahmad, T., et al. (2022) Chronically Administered Agave Americana var. Marginata Extract Ameliorates Diabetes Mellitus, Associated Behavioral Comorbidities and Biochemical Parameters in Alloxan-Induced Diabetic Rats. Saudi Pharmaceutical Journal, 30, 1373-1386. https://doi.org/10.1016/j.jsps.2022.06.003
[50]
Fajarwati, I., Solihin, D.D., Wresdiyati, T. and Batubara, I. (2023) Administration of Alloxan and Streptozotocin in Sprague Dawley Rats and the Challenges in Producing Diabetes Model. IOP Conference Series: Earth and Environmental Science, 1174, Article ID: 012035. https://doi.org/10.1088/1755-1315/1174/1/012035
[51]
Radenković, M., Stojanović, M. and Prostran, M. (2016) Experimental Diabetes Induced by Alloxan and Streptozotocin: The Current State of the Art. Journal of Pharmacological and Toxicological Methods, 78, 13-31. https://doi.org/10.1016/j.vascn.2015.11.004
[52]
Kim, J. (2024) Induction of Diabetes Mellitus Using Alloxan in Sprague Dawley Rats. Cureus, 16, e63359. https://doi.org/10.7759/cureus.63359
[53]
Fajarwati, I., Solihin, D.D., Wresdiyati, T. and Batubara, I. (2023) Self-recovery in Diabetic Sprague Dawley Rats Induced by Intraperitoneal Alloxan and Streptozotocin. Heliyon, 9, e15533. https://doi.org/10.1016/j.heliyon.2023.e15533
[54]
Femlak, M., Gluba-Brzózka, A., Ciałkowska-Rysz, A. and Rysz, J. (2017) The Role and Function of HDL in Patients with Diabetes Mellitus and the Related Cardiovascular Risk. Lipids in Health and Disease, 16, Article No. 207. https://doi.org/10.1186/s12944-017-0594-3
[55]
Jiménez-Sánchez, C., Lozano-Sánchez, J., Gabaldón-Hernández, J.A., Segura-Carretero, A. and Fernández-Gutiérrez, A. (2015) RP-HPLC–ESI–QTOF/MS2 Based Strategy for the Comprehensive Metabolite Profiling of Sclerocaryabirrea (Marula) Bark. Industrial Crops and Products, 71, 214-234. https://doi.org/10.1016/j.indcrop.2015.01.068
[56]
Cádiz-Gurrea, M.d.l.L., Lozano-Sánchez, J., Fernández-Ochoa, Á. and Segura-Carretero, A. (2019) Enhancing the Yield of Bioactive Compounds from Sclerocaryabirrea Bark by Green Extraction Approaches. Molecules, 24, Article 966. https://doi.org/10.3390/molecules24050966
[57]
Alqudah, A., Qnais, E.Y., Wedyan, M.A., Altaber, S., Bseiso, Y., Oqal, M., et al. (2023) Isorhamnetin Reduces Glucose Level, Inflammation, and Oxidative Stress in High-Fat Diet/streptozotocin Diabetic Mice Model. Molecules, 28, Article 502. https://doi.org/10.3390/molecules28020502
[58]
Alqudah, A., Qnais, E., Alqudah, M., Gammoh, O., Wedyan, M. and Abdalla, S.S. (2024) Isorhamnetin as a Potential Therapeutic Agent for Diabetes Mellitus through PGK1/AKT Activation. Archives of Physiology and Biochemistry. https://doi.org/10.1080/13813455.2024.2323947
[59]
Singh, B., Kumar, A., Singh, H., Kaur, S., Arora, S. and Singh, B. (2022) Protective Effect of Vanillic Acid against Diabetes and Diabetic Nephropathy by Attenuating Oxidative Stress and Upregulation of NF-κB, TNF-α and COX-2 Proteins in Rats. Phytotherapy Research, 36, 1338-1352. https://doi.org/10.1002/ptr.7392
[60]
Ji, G., Sun, R., Hu, H., Xu, F., Yu, X., Priya Veeraraghavan, V., et al. (2020) Vannilic Acid Ameliorates Hyperglycemia-Induced Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats. Journal of King Saud University—Science, 32, 2905-2911. https://doi.org/10.1016/j.jksus.2020.04.010