全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

痰热清注射液治疗重症肺炎的网络药理分析
Network Pharmacological Analysis of Tanreqing Injection in the Treatment of Severe Pneumonia

DOI: 10.12677/tcm.2024.1311479, PP. 3225-3236

Keywords: 重症肺炎,痰热清注射液,网络药理学,临床疗效
Severe Pneumonia
, Tanreqing Injection, Network Pharmacology, Clinical Effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:通过网络药理学策略,评价痰热清注射液治重症肺炎的临床疗效,探索其干预机制。方法:通过检索数据库及相关文献查找痰热清注射液的潜在的活性化合物及靶点;以“severe pneumonia”、“severe case pneumonia”为关键词分别检索DrugBank、GeneCards、TTD、OMIM和PharmGKB疾病数据库得到与重症肺炎相关的疾病靶基因;通过Cytoscape 3.9.2软件构建“中药–潜在活性化合物–重症肺炎潜在靶点”网络,以及重症肺炎靶点与痰热清注射液活性化合物调控的交集靶基构建PPI网络,并对核心靶基因进行Gene Ontology (GO)功能富集分析及Kyoto Encyclopedia of Genes and Genomes (KEGG)通路富集分析,初步探讨痰热清注射液干预重症肺炎的潜在机制。结果:检索得到痰热清注射液163个药物活性成分和414个药物靶标,其中药物与疾病共同靶标291个,筛选出痰热清注射液治疗重症肺炎的关键的活性化合物,主要有槲皮素(quercetin),芹黄素(apigenin),熊果酸(ursolic acid),木草素(luteolin),山奈酚(kaempferol),汉黄芩素(wogonin) GO功能富集分析痰热清注射液参与调控positive regulation of gene expression、positive regulation of pri-miRNA transcription from RNA polymerase II promoter等生物过程(BP),transcription factor complex等细胞功能(CC),以及enzyme binding、identical protein binding等的分子功能(MF);KEGG通路富集显示痰热清注射液可以调控肿瘤坏死因子(Tumor Necrosis Factor, TNF)信号通路,以及白介素-17 (IL-17)信号通路等与重症肺炎相关的疾病通路。结论:通过网络药理学研究发现,痰热清注射液干预重症肺炎是多成分、多靶标共同作用的综合性结果,其主要通过干预炎症反应途径达到治疗重症肺炎的目的。
Objective: To evaluate the clinical efficacy of Tanreqing injection in the treatment of severe pneumonia and explore its intervention mechanism through network pharmacological strategy. Methods: The potential active compounds and targets of Tanreqing injection were found by searching database and related literature. “Severe pneumonia” and “severe case pneumonia” were searched in DrugBank, GeneCards, TTD, OMIM and PharmGKB disease databases to obtain the target genes associated with severe pneumonia. The network of “Traditional Chinese Medicine - Potentially active Compound - Potential Target of severe pneumonia” was constructed by Cytoscape 3.9.2 software, and the PPI network was constructed based on the intersection target of severe pneumonia target and the active compound of Tanreqing injection. The Gene Ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genes (KEGG) pathway enrichment analysis were also conducted, and the potential mechanism of Tanreqing injection in the intervention of severe pneumonia was preliminologically discussed. Result: A total of 163 active ingredients and 414 drug targets of Tanreqing injection were retrieved, 291 of which were common targets of drugs and diseases. The key active compounds of Tanreqing injection in the treatment of severe pneumonia were selected, including quercetin, apigenin, ursolic acid,

References

[1]  Torres, A., Cilloniz, C., Niederman, M.S., Menéndez, R., Chalmers, J.D., Wunderink, R.G., et al. (2021) Pneumonia. Nature Reviews Disease Primers, 7, Article No. 25.
https://doi.org/10.1038/s41572-021-00259-0

[2]  熊静, 唐睿, 吴红梅. 重症肺炎患者肺康复治疗的研究进展[J]. 中华肺部疾病杂志(电子版), 2020, 13(4): 557-559.
[3]  Martin-Loeches, I. and Torres, A. (2021) New Guidelines for Severe Community-Acquired Pneumonia. Current Opinion in Pulmonary Medicine, 27, 210-215.
https://doi.org/10.1097/mcp.0000000000000760

[4]  Torres, A., Chalmers, J.D., Dela Cruz, C.S., Dominedò, C., Kollef, M., Martin-Loeches, I., et al. (2019) Challenges in Severe Community-Acquired Pneumonia: A Point-of-View Review. Intensive Care Medicine, 45, 159-171.
https://doi.org/10.1007/s00134-019-05519-y

[5]  Leoni, D., Blot, S., Tsigou, E. and Koulenti, D. (2017) What We Learned from the EU-VAP/CAP Study for Severe Pneumonia. Clinical Pulmonary Medicine, 24, 112-120.
https://doi.org/10.1097/cpm.0000000000000204

[6]  高志, 孙照祝. 重症肺炎的呼吸支持治疗进展[J]. 中国医刊, 2021, 56(9): 946-948.
[7]  Martin-Loeches, I., Garduno, A., Povoa, P. and Nseir, S. (2022) Choosing Antibiotic Therapy for Severe Community-Acquired Pneumonia. Current Opinion in Infectious Diseases, 35, 133-139.
https://doi.org/10.1097/qco.0000000000000819

[8]  Alós, J. (2015) Resistencia bacteriana a los antibióticos: Una crisis global. Enfermedades Infecciosas y Microbiología Clínica, 33, 692-699.
https://doi.org/10.1016/j.eimc.2014.10.004

[9]  曾玉, 韩瑞婷, 周庆伟. 基于网络药理学与分子对接技术探讨痰热清注射液治疗急性肺损伤的作用机制[J]. 中国中药杂志, 2021, 46(15): 3960-3969.
[10]  Yang, W., Cui, K., Tong, Q., Ma, S., Sun, Y., He, G., et al. (2022) Traditional Chinese Medicine Tanreqing Targets Both Cell Division and Virulence in Staphylococcus Aureus. Frontiers in Cellular and Infection Microbiology, 12, Article 884045.
https://doi.org/10.3389/fcimb.2022.884045

[11]  Hu, C., Li, J., Tan, Y., Liu, Y., Bai, C., Gao, J., et al. (2022) Tanreqing Injection Attenuates Macrophage Activation and the Inflammatory Response via the Lncrna-Snhg1/Hmgb1 Axis in Lipopolysaccharide-Induced Acute Lung Injury. Frontiers in Immunology, 13, Article 820718.
https://doi.org/10.3389/fimmu.2022.820718

[12]  刘嘉, 万春艳. 熊胆粉溶胆结石的作用研究[J]. 中国林副特产, 2007(4): 37-39.
[13]  王佳婧, 郑勇凤, 秦晶, 等. 熊胆粉的药理作用与新剂型研究进展[J]. 中国医院药学杂志, 2016, 36(7): 598-602.
[14]  李菲, 王伯初, 祝连彩. 熊胆粉与家禽胆粉中氨基酸和微量元素的比较分析[J]. 中成药, 2015, 37(11): 2555-2558.
[15]  Wang, Y., Liu, Z., Li, C., Li, D., Ouyang, Y., Yu, J., et al. (2012) Drug Target Prediction Based on the Herbs Components: The Study on the Multitargets Pharmacological Mechanism of Qishenkeli Acting on the Coronary Heart Disease. Evidence-Based Complementary and Alternative Medicine, 2012, 1-10.
https://doi.org/10.1155/2012/698531

[16]  Funakoshi-Tago, M., Nakamura, K., Tago, K., Mashino, T. and Kasahara, T. (2011) Anti-Inflammatory Activity of Structurally Related Flavonoids, Apigenin, Luteolin and Fisetin. International Immunopharmacology, 11, 1150-1159.
https://doi.org/10.1016/j.intimp.2011.03.012

[17]  Devi, K.P., Malar, D.S., Nabavi, S.F., Sureda, A., Xiao, J., Nabavi, S.M., et al. (2015) Kaempferol and Inflammation: From Chemistry to Medicine. Pharmacological Research, 99, 1-10.
https://doi.org/10.1016/j.phrs.2015.05.002

[18]  Huang, R., Yu, Y., Cheng, W., OuYang, C., Fu, E. and Chu, C. (2010) Immunosuppressive Effect of Quercetin on Dendritic Cell Activation and Function. The Journal of Immunology, 184, 6815-6821.
https://doi.org/10.4049/jimmunol.0903991

[19]  Endale, M., Park, S., Kim, S., Kim, S., Yang, Y., Cho, J.Y., et al. (2013) Quercetin Disrupts Tyrosine-Phosphorylated Phosphatidylinositol 3-Kinase and Myeloid Differentiation Factor-88 Association, and Inhibits MAPK/AP-1 and IKK/NF-κB-Induced Inflammatory Mediators Production in RAW 264.7 Cells. Immunobiology, 218, 1452-1467.
https://doi.org/10.1016/j.imbio.2013.04.019

[20]  Shorobi, F.M., Nisa, F.Y., Saha, S., Chowdhury, M.A.H., Srisuphanunt, M., Hossain, K.H., et al. (2023) Quercetin: A Functional Food-Flavonoid Incredibly Attenuates Emerging and Re-Emerging Viral Infections through Immunomodulatory Actions. Molecules, 28, Article 938.
https://doi.org/10.3390/molecules28030938

[21]  Mlala, S., Oyedeji, A.O., Gondwe, M. and Oyedeji, O.O. (2019) Ursolic Acid and Its Derivatives as Bioactive Agents. Molecules, 24, Article 2751.
https://doi.org/10.3390/molecules24152751

[22]  Gayathri, R., Priya, D.K., Gunassekaran, G.R., et al. (2009) Ursolic Acid Attenuates Oxidative Stress-Mediated Hepatocellular Carcinoma Induction by Diethylnitrosamine in Male Wistar Rats. Asian Pacific Journal of Cancer Prevention, 10, 933-938.
[23]  Saravanakumar, K., Park, S., Sathiyaseelan, A., Kim, K., Cho, S., Mariadoss, A.V.A., et al. (2021) Metabolite Profiling of Methanolic Extract of Gardenia Jaminoides by LC-MS/MS and GC-MS and Its Anti-Diabetic, and Anti-Oxidant Activities. Pharmaceuticals, 14, Article 102.
https://doi.org/10.3390/ph14020102

[24]  Franza, L., Carusi, V., Nucera, E. and Pandolfi, F. (2021) Luteolin, Inflammation and Cancer: Special Emphasis on Gut Microbiota. BioFactors, 47, 181-189.
https://doi.org/10.1002/biof.1710

[25]  Aziz, N., Kim, M. and Cho, J.Y. (2018) Anti-Inflammatory Effects of Luteolin: A Review of in Vitro, in Vivo, and in Silico Studies. Journal of Ethnopharmacology, 225, 342-358.
https://doi.org/10.1016/j.jep.2018.05.019

[26]  Chen, M., Xiao, J., El-Seedi, H.R., et al. (2022) Kaempferol and Atherosclerosis: From Mechanism to Medicine. Critical Reviews in Food Science and Nutrition, 64, 2157-2175.
[27]  Huynh, D.L., Ngau, T.H., Nguyen, N.H., Tran, G. and Nguyen, C.T. (2020) Potential Therapeutic and Pharmacological Effects of Wogonin: An Updated Review. Molecular Biology Reports, 47, 9779-9789.
https://doi.org/10.1007/s11033-020-05972-9

[28]  Lei, L., Zhao, J., Liu, X., Chen, J., Qi, X., Xia, L., et al. (2021) Wogonin Alleviates Kidney Tubular Epithelial Injury in Diabetic Nephropathy by Inhibiting PI3K/Akt/NF-κB Signaling Pathways. Drug Design, Development and Therapy, 15, 3131-3150.
https://doi.org/10.2147/dddt.s310882

[29]  Dai, J., Guo, W., Tan, Y., Niu, K., Zhang, J., Liu, C., et al. (2021) Wogonin Alleviates Liver Injury in Sepsis through Nrf2-Mediated NF-κB Signalling Suppression. Journal of Cellular and Molecular Medicine, 25, 5782-5798.
https://doi.org/10.1111/jcmm.16604

[30]  Willemsen, J., Neuhoff, M., Hoyler, T., Noir, E., Tessier, C., Sarret, S., et al. (2021) TNF Leads to mtDNA Release and cGAS/STING-Dependent Interferon Responses That Support Inflammatory Arthritis. Cell Reports, 37, Article 109977.
https://doi.org/10.1016/j.celrep.2021.109977

[31]  Zhong, Z., Wen, Z. and Darnell, J.E. (1994) Stat3: A STAT Family Member Activated by Tyrosine Phosphorylation in Response to Epidermal Growth Factor and Interleukin-6. Science, 264, 95-98.
https://doi.org/10.1126/science.8140422

[32]  Tuazon Kels, M.J., Ng, E., Al Rumaih, Z., Pandey, P., Ruuls, S.R., Korner, H., et al. (2020) TNF Deficiency Dysregulates Inflammatory Cytokine Production, Leading to Lung Pathology and Death during Respiratory Poxvirus Infection. Proceedings of the National Academy of Sciences, 117, 15935-15946.
https://doi.org/10.1073/pnas.2004615117

[33]  梁木林, 党红星, 鲁雪, 等. 抑制mTOR信号通路对幼鼠肺损伤时p-AKT1分子的影响及意义[J]. 中国病理生理杂志, 2019, 35(3): 506-514.
[34]  Cao, P., Aoki, Y., Badri, L., Walker, N.M., Manning, C.M., Lagstein, A., et al. (2017) Autocrine Lysophosphatidic Acid Signaling Activates Β-Catenin and Promotes Lung Allograft Fibrosis. Journal of Clinical Investigation, 127, 1517-1530.
https://doi.org/10.1172/jci88896

[35]  Sun, J., Jin, T., Niu, Z., Guo, J., Guo, Y., Yang, R., et al. (2022) Lncrna DACH1 Protects against Pulmonary Fibrosis by Binding to SRSF1 to Suppress CTNNB1 Accumulation. Acta Pharmaceutica Sinica B, 12, 3602-3617.
https://doi.org/10.1016/j.apsb.2022.04.006

[36]  Abramson, S. and Yazici, Y. (2006) Biologics in Development for Rheumatoid Arthritis: Relevance to Osteoarthritis. Advanced Drug Delivery Reviews, 58, 212-225.
https://doi.org/10.1016/j.addr.2006.01.008

[37]  Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Smith, N., et al. (2020) Impaired Type I Interferon Activity and Inflammatory Responses in Severe COVID-19 Patients. Science, 369, 718-724.
https://doi.org/10.1126/science.abc6027

[38]  Menter, A., Krueger, G.G., Paek, S.Y., Kivelevitch, D., Adamopoulos, I.E. and Langley, R.G. (2021) Interleukin-17 and Interleukin-23: A Narrative Review of Mechanisms of Action in Psoriasis and Associated Comorbidities. Dermatology and Therapy, 11, 385-400.
https://doi.org/10.1007/s13555-021-00483-2

[39]  Kayama, H., Tani, H., Kitada, S., Opasawatchai, A., Okumura, R., Motooka, D., et al. (2019) BATF2 Prevents T-Cell-Mediated Intestinal Inflammation through Regulation of the IL-23/IL-17 Pathway. International Immunology, 31, 371-383.
https://doi.org/10.1093/intimm/dxz014

[40]  Morrow, K.N., Coopersmith, C.M. and Ford, M.L. (2019) IL-17, IL-27, and IL-33: A Novel Axis Linked to Immunological Dysfunction during Sepsis. Frontiers in Immunology, 10, Article 1982.
https://doi.org/10.3389/fimmu.2019.01982

[41]  Ritchie, N.D., Ritchie, R., Bayes, H.K., Mitchell, T.J. and Evans, T.J. (2018) IL-17 Can Be Protective or Deleterious in Murine Pneumococcal Pneumonia. PLOS Pathogens, 14, e1007099.
https://doi.org/10.1371/journal.ppat.1007099

[42]  Yamaguchi, S., Nambu, A., Numata, T., Yoshizaki, T., Narushima, S., Shimura, E., et al. (2018) The Roles of IL-17C in T Cell-Dependent and Independent Inflammatory Diseases. Scientific Reports, 8, Article No. 15750.
https://doi.org/10.1038/s41598-018-34054-x

[43]  闫百灵, 唐颖, 付尧, 等. HMGB1-IL-17信号传导轴在老年重症肺炎患者中作用及机制[J]. 中国老年学杂志, 2018, 38(14): 3380-3382.
[44]  Pacha, O., Sallman, M.A. and Evans, S.E. (2020) COVID-19: A Case for Inhibiting Il-17? Nature Reviews Immunology, 20, 345-346.
https://doi.org/10.1038/s41577-020-0328-z

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133