|
视网膜色素变性的发病机制及中医药治疗进展
|
Abstract:
视网膜色素变性(RP)是最常见的遗传性视网膜疾病之一,具有较高的全球发病率。其潜在的病理机制涉及视神经的退行性改变和视网膜的逐渐损伤,首先表现为杆状感光细胞的损失,随后影响锥状感光细胞。RP的发病机制复杂,目前尚无单一的有效治疗方法。中医学以整体观念和辨证论治为基础,在维持视功能、延缓疾病进展等方面展现出一定的优势。本文对近年来中医药治疗RP的相关研究进行了回顾,重点从RP的发病机制、中药治疗、针刺疗法以及针药结合等方面进行综述,并对中医药治疗RP的不足与未来发展方向提出了展望。
Retinitis pigmentosa (RP) is one of the most common inherited retinal diseases, with a high global incidence rate. The underlying pathological mechanisms involve degenerative changes in the optic nerve and progressive damage to the retina, initially manifesting as loss of rod photoreceptors, followed by cone photoreceptors. The pathogenesis of RP is complex, and no single effective treatment currently exists. Traditional Chinese medicine (TCM), based on the holistic concept and syndrome differentiation, demonstrates certain advantages in maintaining visual function and slowing disease progression. This paper reviews recent studies on the treatment of RP with TCM, focusing on the pathogenesis of RP, herbal medicine treatment, acupuncture therapy, and the combination of acupuncture and herbal medicine. It also provides an outlook on the shortcomings of TCM treatment for RP and future development directions.
[1] | Liu, W., Liu, S., Li, P. and Yao, K. (2022) Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. International Journal of Molecular Sciences, 23, Article No. 4883. https://doi.org/10.3390/ijms23094883 |
[2] | Jordan, S.A., Farrar, G.J., Kenna, P., Humphries, M.M., Sheils, D.M., Kumar-Singh, R., et al. (1993) Localization of an Autosomal Dominant Retinitis Pigmentosa Gene to Chromosome 7q. Nature Genetics, 4, 54-58. https://doi.org/10.1038/ng0593-54 |
[3] | Banerjee, P., Kleyn, P.W., Knowles, J.A., Lewis, C.A., Ross, B.M., Parano, E., et al. (1998) TULP1 Mutation in Two Extended Dominican Kindreds with Autosomal Recessive Retinitis Pigmentosa. Nature Genetics, 18, 177-179. https://doi.org/10.1038/ng0298-177 |
[4] | Vervoort, R., Lennon, A., Bird, A.C., Tulloch, B., Axton, R., Miano, M.G., et al. (2000) Mutational Hot Spot within a New RPGR Exon in X-Linked Retinitis Pigmentosa. Nature Genetics, 25, 462-466. https://doi.org/10.1038/78182 |
[5] | 世界中医药学会联合会眼科分会. 原发性视网膜色素变性国际中医临床实践指南[J]. 中国中医眼科杂志, 2023, 33(4): 301-304. |
[6] | Huang, Z., Li, Y., Xu, K. and Li, X. (2022) Genetic, Environmental and Other Risk Factors for Progression of Retinitis Pigmentosa. International Journal of Ophthalmology, 15, 828-837. https://doi.org/10.18240/ijo.2022.05.21 |
[7] | Eid, A.T., Eid, K.T., Odom, J.V., Hinkle, D. and Leys, M. (2024) Autosomal Dominant Retinitis Pigmentosa Secondary to TOPORS Mutations: A Report of a Novel Mutation and Clinical Findings. Journal of Clinical Medicine, 13, Article No. 1498. https://doi.org/10.3390/jcm13051498 |
[8] | Birch, D.G., Cheetham, J.K., Daiger, S.P., Hoyng, C., Kay, C., MacDonald, I.M., et al. (2023) Overcoming the Challenges to Clinical Development of X-Linked Retinitis Pigmentosa Therapies: Proceedings of an Expert Panel. Translational Vision Science & Technology, 12, Article No. 5. https://doi.org/10.1167/tvst.12.6.5 |
[9] | Di Iorio, V., Karali, M., Melillo, P., Testa, F., Brunetti-Pierri, R., Musacchia, F., et al. (2020) Spectrum of Disease Severity in Patients with X-Linked Retinitis Pigmentosa Due to RPGR Mutations. Investigative Opthalmology & Visual Science, 61, Article No. 36. https://doi.org/10.1167/iovs.61.14.36 |
[10] | Haraguchi, Y., Chiang, T. and Yu, M. (2023) Application of Electrophysiology in Non-Macular Inherited Retinal Dystrophies. Journal of Clinical Medicine, 12, Article No. 6953. https://doi.org/10.3390/jcm12216953 |
[11] | 张文炳, 朱思泉. 原发性视网膜色素变性治疗进展[J]. 中医眼耳鼻喉杂志, 2022, 12(1): 41-44. |
[12] | Jespersgaard, C., Bertelsen, M., Arif, F., Gellert-Kristensen, H.G., Fang, M., Jensen, H., et al. (2020) Bi-Allelic Pathogenic Variations in MERTK Including Deletions Are Associated with an Early Onset Progressive Form of Retinitis Pigmentosa. Genes, 11, Article No. 1517. https://doi.org/10.3390/genes11121517 |
[13] | Nguyen, X., Moekotte, L., Plomp, A.S., Bergen, A.A., van Genderen, M.M. and Boon, C.J.F. (2023) Retinitis Pigmentosa: Current Clinical Management and Emerging Therapies. International Journal of Molecular Sciences, 24, Article No. 7481. https://doi.org/10.3390/ijms24087481 |
[14] | Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., et al. (1999) Molecular Characterization of Mitochondrial Apoptosis-Inducing Factor. Nature, 397, 441-446. https://doi.org/10.1038/17135 |
[15] | A.A. Aly, H. and G. Eid, B. (2020) Cisplatin Induced Testicular Damage through Mitochondria Mediated Apoptosis, Inflammation and Oxidative Stress in Rats: Impact of Resveratrol. Endocrine Journal, 67, 969-980. https://doi.org/10.1507/endocrj.ej20-0149 |
[16] | Gérard, C., Lebrun, R., Lemesle, E., Avilan, L., Chang, K.S., Jin, E., et al. (2022) Reduction in Phosphoribulokinase Amount and Re-Routing Metabolism in Chlamydomonas reinhardtii CP12 Mutants. International Journal of Molecular Sciences, 23, Article No. 2710. https://doi.org/10.3390/ijms23052710 |
[17] | Elmore, S. (2007) Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 35, 495-516. https://doi.org/10.1080/01926230701320337 |
[18] | Zhu, D., Xie, M., Gademann, F., Cao, J., Wang, P., Guo, Y., et al. (2020) Protective Effects of Human Ips-Derived Retinal Pigmented Epithelial Cells on Retinal Degenerative Disease. Stem Cell Research & Therapy, 11, Article No. 98. https://doi.org/10.1186/s13287-020-01608-8 |
[19] | Zhu, P., Yang, Q., Li, G. and Chang, Q. (2021) PKM2 Is a Potential Diagnostic and Therapeutic Target for Retinitis Pigmentosa. Disease Markers, 2021, Article ID: 1602797. https://doi.org/10.1155/2021/1602797 |
[20] | Chen, Y., Yang, M. and Wang, Z. (2019) (Z)-7,4’-dimethoxy-6-hydroxy-aurone-4-o-β-glucopyranoside Mitigates Retinal Degeneration in Rd10 Mouse Model through Inhibiting Oxidative Stress and Inflammatory Responses. Cutaneous and Ocular Toxicology, 39, 36-42. https://doi.org/10.1080/15569527.2019.1685535 |
[21] | Murakami, Y., Nakabeppu, Y. and Sonoda, K. (2020) Oxidative Stress and Microglial Response in Retinitis Pigmentosa. International Journal of Molecular Sciences, 21, Article No. 7170. https://doi.org/10.3390/ijms21197170 |
[22] | Zhang, D., Wu, J., Wu, J. and Zhang, S. (2021) Paeonol Induces Protective Autophagy in Retinal Photoreceptor Cells. Frontiers in Pharmacology, 12, Article ID: 667959. https://doi.org/10.3389/fphar.2021.667959 |
[23] | Usui, S., Oveson, B.C., Iwase, T., Lu, L., Lee, S.Y., Jo, Y., et al. (2011) Overexpression of SOD in Retina: Need for Increase in H2O2-Detoxifying Enzyme in Same Cellular Compartment. Free Radical Biology and Medicine, 51, 1347-1354. https://doi.org/10.1016/j.freeradbiomed.2011.06.010 |
[24] | Xiong, W., MacColl Garfinkel, A.E., Li, Y., Benowitz, L.I. and Cepko, C.L. (2015) NRF2 Promotes Neuronal Survival in Neurodegeneration and Acute Nerve Damage. Journal of Clinical Investigation, 125, 1433-1445. https://doi.org/10.1172/jci79735 |
[25] | Olivares-González, L., Velasco, S., Campillo, I. and Rodrigo, R. (2021) Retinal Inflammation, Cell Death and Inherited Retinal Dystrophies. International Journal of Molecular Sciences, 22, Article No. 2096. https://doi.org/10.3390/ijms22042096 |
[26] | Murakami, Y., Ishikawa, K., Nakao, S. and Sonoda, K. (2020) Innate Immune Response in Retinal Homeostasis and Inflammatory Disorders. Progress in Retinal and Eye Research, 74, Article ID: 100778. https://doi.org/10.1016/j.preteyeres.2019.100778 |
[27] | Silverman, S.M., Ma, W., Wang, X., Zhao, L. and Wong, W.T. (2019) C3-and Cr3-Dependent Microglial Clearance Protects Photoreceptors in Retinitis Pigmentosa. Journal of Experimental Medicine, 216, 1925-1943. https://doi.org/10.1084/jem.20190009 |
[28] | Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. https://doi.org/10.1016/j.cell.2017.09.021 |
[29] | Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88. https://doi.org/10.1038/s41419-020-2298-2 |
[30] | Winterbourn, C.C. (1995) Toxicity of Iron and Hydrogen Peroxide: The Fenton Reaction. Toxicology Letters, 82, 969-974. https://doi.org/10.1016/0378-4274(95)03532-x |
[31] | Feng, H., Schorpp, K., Jin, J., Yozwiak, C.E., Hoffstrom, B.G., Decker, A.M., et al. (2020) Transferrin Receptor Is a Specific Ferroptosis Marker. Cell Reports, 30, 3411-3423.e7. https://doi.org/10.1016/j.celrep.2020.02.049 |
[32] | Yang, M. and Lai, C.L. (2020) Sars-Cov-2 Infection: Can Ferroptosis Be a Potential Treatment Target for Multiple Organ Involvement? Cell Death Discovery, 6, Article No. 130. https://doi.org/10.1038/s41420-020-00369-w |
[33] | Yang, M., So, K., Lam, W. and Lo, A.C.Y. (2021) Cell Ferroptosis: New Mechanism and New Hope for Retinitis Pigmentosa. Cells, 10, Article No. 2153. https://doi.org/10.3390/cells10082153 |
[34] | Shu, W., Baumann, B.H., Song, Y., Liu, Y., Wu, X. and Dunaief, J.L. (2020) Ferrous but Not Ferric Iron Sulfate Kills Photoreceptors and Induces Photoreceptor-Dependent RPE Autofluorescence. Redox Biology, 34, Article ID: 101469. https://doi.org/10.1016/j.redox.2020.101469 |
[35] | Deleon, E., Lederman, M., Berenstein, E., Meir, T., Chevion, M. and Chowers, I. (2009) Alteration in Iron Metabolism during Retinal Degeneration in Rd10 Mouse. Investigative Opthalmology & Visual Science, 50, Article No. 1360. https://doi.org/10.1167/iovs.08-1856 |
[36] | Song, D., Song, Y., Hadziahmetovic, M., Zhong, Y. and Dunaief, J.L. (2012) Systemic Administration of the Iron Chelator Deferiprone Protects against Light-Induced Photoreceptor Degeneration in the Mouse Retina. Free Radical Biology and Medicine, 53, 64-71. https://doi.org/10.1016/j.freeradbiomed.2012.04.020 |
[37] | Obolensky, A., Berenshtein, E., Lederman, M., Bulvik, B., Alper-Pinus, R., Yaul, R., et al. (2011) Zinc-Desferrioxamine Attenuates Retinal Degeneration in the Rd10 Mouse Model of Retinitis Pigmentosa. Free Radical Biology and Medicine, 51, 1482-1491. https://doi.org/10.1016/j.freeradbiomed.2011.07.014 |
[38] | 李娟英, 张文芳. 铁死亡在眼底疾病中的研究进展[J]. 国际眼科杂志, 2024, 24(5): 767-771. |
[39] | 霍言迪, 张芮, 莫亚. 铁死亡及铁代谢途径与视网膜退行性疾病研究进展[J]. 眼科学报, 2024, 39(1): 37-43. |
[40] | 国家中医药管理局. 高风雀目的诊断依据、证候分类、疗效评定——中华人民共和国中医药行业标准《中医内科病证诊断疗效标准》(ZY/T001.1-94) [J]. 辽宁中医药大学学报, 2017, 19(6): 147. |
[41] | 刘志宏. 《审视瑶函》眼病治疗探究[J]. 中国实用医药, 2012, 7(33): 242. |
[42] | 刘静霞. 高风内障中医临证撮要[C]//世界中医药学会联合会眼科专业委员会第四届学术年会、中国中西医结合学会眼科专业委员会第十二届中西医结合学术年会、中华中医药学会眼科分会第十二届中医眼科学术年会、山东省第十七次眼科学学术会议论文汇编. 2013: 133-135. |
[43] | 李楠, 黄秀蓉, 马珊, 等. 活血化瘀药物在视网膜色素变性治疗中的应用[J]. 中医药学报, 2007(1): 49-50. |
[44] | 罗丹. 明目地黄汤加减治疗视网膜色素变性肝肾阴虚型的临床研究[J]. 中外医学研究, 2012, 10(5): 4-6. |
[45] | 蒋鹏飞, 王英, 潘坤, 等. 益气明目丸对视网膜色素变性大鼠视网膜Fas、FasL蛋白表达的影响[J]. 中医杂志, 2019, 60(4): 327-332. |
[46] | 刘昳, 张元钟, 章青. 银杏明目方治疗原发性视网膜色素变性[J]. 长春中医药大学学报, 2017, 33(1): 115-117. |
[47] | 祁玉麟, 贾茜钰, 叶河江. 针刺治疗视网膜色素变性的研究进展[J]. 中华中医药杂志, 2022, 37(4): 2148-2151. |
[48] | 王山山. 电针窍明穴联合传统穴位治疗视神经萎缩疗效观察[D]: [硕士学位论文]. 哈尔滨: 黑龙江中医药大学, 2020. |
[49] | 刘健, 亢泽峰, 刘洁, 等. 中医综合疗法周期性治疗原发性视网膜色素变性的临床疗效观察[J]. 中国中医眼科杂志, 2018, 28(1): 33-35. |
[50] | 彭俊, 杨毅敬, 李波, 等. 中医综合治疗视网膜色素变性患者973例疗效观察[J]. 辽宁中医杂志, 2021, 48(5): 95-97+222. |
[51] | 郭雨佳, 刘静霞. 基于数据挖掘研究针刺治疗视网膜色素变性的经穴规律[J]. 中国中医眼科杂志, 2023, 33(7): 621-626. |
[52] | 宁云红, 马栋, 郭承伟. 针药结合治疗视网膜色素变性30例[J]. 山东中医杂志, 2015, 34(8): 595-596. |
[53] | 凌洪峰. 穴位注射治疗视网膜色素变性光感细胞凋亡机理探析[J]. 中医药学刊, 2004(12): 2317-2318. |
[54] | 王莹. 针刺干预MNU诱导的大鼠视网膜感光细胞凋亡机制研究[D]: [硕士学位论文]. 成都: 成都中医药大学, 2013. |
[55] | 黄蓉, 律东, 李杜军. 针药并用治疗原发性视网膜色素变性临床观察[J]. 湖北中医药大学学报, 2013, 15(5): 68. |
[56] | 邓方圆, 韩梦雨, 邓婷婷, 等. 视网膜色素变性基因治疗的相关研究进展[J]. 国际眼科杂志, 2021, 21(7): 1205-1208. |
[57] | Faber, H., Besch, D., Bartz‐Schmidt, K., Eisenstein, H., Roider, J., Sachs, H., et al. (2020) Restriction of Eye Motility in Patients with RETINA IMPLANT Alpha Ams. Acta Ophthalmologica, 98, e998-e1003. https://doi.org/10.1111/aos.14435 |
[58] | 刘仁跃, 李慧丽, 王辉武. 中医药治疗视网膜色素变性的研究进展[J]. 中国中医急症, 2023, 32(7): 1313-1316. |