|
Sustainable Energy 2024
基于机器学习方法的钙钛矿光伏材料光电转化率因素探究
|
Abstract:
随着社会的发展需要,钙钛矿材料因其优异的光电性质在光伏发电领域备受关注。为满足产业发展的需求,本文提出运用机器学习方法对钙钛矿光伏材料进行预测优选,降低成本,节约时间。首先对数据进行预处理,运用随机森林方法建立因素–带隙预测模型,实现初级预测优选;其次运用决策树、BP神经网络模型、随机森林三种方法分别建立关于因素–光电转化率预测模型,结果表明随机森林模型的预测精度最高,实现二级预测优选。
With the development needs of society, perovskite materials have attracted much attention in the field of photovoltaic power generation due to their excellent optoelectronic properties. In order to meet the needs of industrial development, this article proposes the use of machine learning methods to predict and optimize perovskite photovoltaic materials, reducing costs and saving time. Firstly, the data is preprocessed and a factor-bandgap prediction model is established using the random forest method to achieve primary prediction optimization; Secondly, three methods including decision tree, BP neural network model, and random forest were used to establish prediction models for factor-photoelectric conversion rate. The results show that the random forest model had the highest prediction accuracy, achieving optimal selection for secondary prediction.
[1] | 中国研究人员开发出新的钙钛矿电池材料[J]. 金属功能材料, 2024, 31(4): 83. |
[2] | Jo, B., Chen, W. and Jung, H.S. (2025) Comprehensive Review of Advances in Machine-Learning-Driven Optimization and Characterization of Perovskite Materials for Photovoltaic Devices. Journal of Energy Chemistry, 101, 298-323. https://doi.org/10.1016/j.jechem.2024.09.043 |
[3] | El-Shishtawy, R.M. and ElShishtawy, N. (2024) Perovskite Solar Cells: Organic-Based Molecules for Electron and Hole Transport Materials with Machine Learning Insights. Current Opinion in Colloid & Interface Science, 74, Article ID: 101848. https://doi.org/10.1016/j.cocis.2024.101848 |
[4] | 胡扬, 张胜利, 周文瀚, 等. 基于机器学习探索钙钛矿材料及其应用[J]. 硅酸盐学报, 2023, 51(2): 452-468. |
[5] | Zhou, X., Jankowska, J., Dong, H. and Prezhdo, O.V. (2018) Recent Theoretical Progress in the Development of Perovskite Photovoltaic Materials. Journal of Energy Chemistry, 27, 637-649. https://doi.org/10.1016/j.jechem.2017.10.010 |
[6] | David, T.W. and Kettle, J. (2022) Design for a Sustainability Approach to Organic Solar Cell Design: The Use of Machine Learning to Quantify the Trade-Off between Performance, Stability, and Environmental Impact. The Journal of Physical Chemistry C, 126, 4774-4784. https://doi.org/10.1021/acs.jpcc.1c10114 |
[7] | 孙涛, 袁健美. 基于迁移学习的钙钛矿材料带隙预测[J]. 物理学报, 2023, 72(21): 360-367. |
[8] | 孔瑞盈, 韦怡君, 陈嘉诚. 钙钛矿太阳电池高效光电耦合仿真与机器学习研究[J]. 激光与光电子学进展, 2024, 61(1): 409-419. |
[9] | 张浩. 有机小分子材料的设计合成及其在高效三元有机太阳能电池中的研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2020. |
[10] | 姜慧, 何天流, 刘敏. 面向异构流式数据的高性能联邦持续学习算法[J]. 通信学报. 2023, 44(5): 123-136. |
[11] | 刘敏, 曹卓洋. 生态环境空间管控中自动研判算法研究[J]. 科技与创新, 2023(21): 158-161. |
[12] | 王家栋. 中小投资者意见分歧与盈余公告效应[D]: [硕士学位论文]. 杭州: 浙江大学, 2015. |
[13] | 严锦茹. 管理层权力视角下债务融资结构对企业创新绩效的影响研究[D]: [硕士学位论文]. 长沙: 长沙理工大学, 2020. |
[14] | 裴越. 高效钙钛矿太阳能电池的光伏特性与稳定性分析[J]. 中国高新科技, 2024(15): 98-99, 105. |
[15] | 冯顺. 基于机器学习的无机钙钛矿材料形成能预测[J]. 无线互联科技, 2023, 20(16): 47-51. |