|
Material Sciences 2024
合成条件对高温高压条件下制备CrO2晶体的影响
|
Abstract:
采用高纯度的Cr2O5作为原料,利用高温高压方法在不同合成条件下制备高纯度的CrO2,研究不同的合成条件对于制备CrO2晶粒尺寸和形貌的影响。结果表明:随着合成温度的降低,晶粒尺寸明显减小;合成压力的升高,晶粒尺寸明显减小,完整度有一定的提高,但晶体长径比减小;合成时间的变化对晶粒尺寸和晶型完整度无明显影响。
High-purity CrO2 was prepared using high-purity Cr2O5 as the raw material through a high temperature and high pressure (HTHP) method under various synthesis conditions. The influence of different synthesis conditions on the grain size and morphology of the prepared CrO2 was investigated. The results indicate that as the synthesis temperature decreases, the grain size decreases significantly. With an increase in synthesis pressure, the grain size also decreases markedly, and the crystallinity improves to some extent, although the aspect ratio of the crystals diminishes. Changes in synthesis time have no notable effect on grain size or crystallinity.
[1] | Zhang, Z., Cheng, M., Yu, Z., Zou, Z., Liu, Y., Shi, J., et al. (2020) Ultralow Gilbert Damping in CrO2 Epitaxial Films. Physical Review B, 102, Article 014454. https://doi.org/10.1103/physrevb.102.014454 |
[2] | Balamurugan, K., Siva Sankaran, P.S. and Manivannan, S. (2020) Magnetic Vortex States in Chromium(IV) Oxide (CrO2). Journal of Magnetism and Magnetic Materials, 494, Article 165845. https://doi.org/10.1016/j.jmmm.2019.165845 |
[3] | Öztürk, H. and Kürkçü, C. (2019) Pressure-Induced Phase Transformations, Electronic Properties and Intermediate Phases of Chromium Dioxide. Acta Physica Polonica A, 136, 26-32. https://doi.org/10.12693/aphyspola.136.26 |
[4] | Han, J., Shen, J. and Gao, G. (2019) CrO2-Based Heterostructure and Magnetic Tunnel Junction: Perfect Spin Filtering Effect, Spin Diode Effect and High Tunnel Magnetoresistance. RSC Advances, 9, 3550-3557. https://doi.org/10.1039/c8ra08107g |
[5] | Soulen, R.J., Byers, J.M., Osofsky, M.S., Nadgorny, B., Ambrose, T., Cheng, S.F., et al. (1998) Measuring the Spin Polarization of a Metal with a Superconducting Point Contact. Science, 282, 85-88. https://doi.org/10.1126/science.282.5386.85 |
[6] | Fan, Y.B., Zheng, R.K. and Wen, G.H. (2018) Study of Microstructure and Magnetotransport Properties of CrO2 Prepared under HTHP. Journal of Magnetism and Magnetic Materials, 453, 193-197. https://doi.org/10.1016/j.jmmm.2018.01.011 |
[7] | de Groot, R.A., Mueller, F.M., van Engen, P.G. and Buschow, K.H.J. (1983) New Class of Materials: Half-Metallic Ferromagnets. Physical Review Letters, 50, 2024-2027. https://doi.org/10.1103/physrevlett.50.2024 |
[8] | Katsnelson, M.I., Irkhin, V.Y., Chioncel, L., Lichtenstein, A.I. and de Groot, R.A. (2008) Half-Metallic Ferromagnets: From Band Structure to Many-Body Effects. Reviews of Modern Physics, 80, 315-378. https://doi.org/10.1103/revmodphys.80.315 |
[9] | Zhao, Q., Fan, Y., Wen, G., Liu, Z., Ma, H., Jia, X., et al. (2010) Shape-Controlled Synthesis of High-Purity CrO2 under Hthp. Materials Letters, 64, 592-595. https://doi.org/10.1016/j.matlet.2009.12.011 |
[10] | 范印波. 二氧化铬基复合氧化物的高温高压合成及其输运性质研究[D]: [博士学位论文]. 长春: 吉林大学, 2013. |
[11] | 张彩萍. 二氧化铬薄膜的合成及其输运性质的研究[D]: [博士学位论文]. 长春: 吉林大学, 2014. |
[12] | Huang, H., Lin, T., Fu, Q., Chen, L., Chen, K., Hou, Q., et al. (2022) Structural, Magnetic Properties, and Electronic Structure of Cr1-x-MnxO2 Solid Solution. Ceramics International, 48, 18784-18792. https://doi.org/10.1016/j.ceramint.2022.03.153 |
[13] | Huang, H., Lin, T., Fu, Q., Chen, L., Hou, Q., Li, C., et al. (2022) Structural, Magnetic, and Electronic Properties of the Cr1–xTixO2 Solid. Inorganic Chemistry, 61, 1391-1400. https://doi.org/10.1021/acs.inorgchem.1c02923 |