全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dy3+掺杂CaMnO3材料的微波吸收性能研究
Study on Microwave Absorption Properties of CaMnO3 Samples Doped with Dy3+ Ions

DOI: 10.12677/ms.2024.1411177, PP. 1639-1646

Keywords: 微波吸收,CaMnO3材料,Dy3+离子掺杂
Microwave Absorption
, CaMnO3 Material, Dy3+ Ion Doping

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章主要研究了不等价Dy3+离子掺杂的Ca1-xDyxMnO3样品的微波吸收性能。利用固相反应法制备不同Dy3+浓度掺杂的Ca1?xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%)样品,分析Dy3+离子掺杂对Ca1?xDyxMnO3样品在晶体结构、微观形貌、电磁参数以及吸波性能等方面的影响。实验结果表明,随着Dy3+离子掺杂浓度的提高,样品颗粒尺寸减小,介电常数实部增大,吸波性能得到增强。当Dy3+离子掺杂浓度为5%时,样品吸波性能最佳,在频率2~18 GHz范围内,最大有效吸波带宽达到2.2 GHz,最小反射损耗可达?39.72 dB。文章利用不等价Dy3+离子掺杂有效提高吸波性能,拓宽了CaMnO3材料在微波吸收领域的潜在应用。
This paper mainly studies the microwave absorption properties of Ca1?xDyxMnO3 samples doped with non-equivalent Dy3+ ions. Samples of Ca1?xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%) doped with various concentrations of Dy3+ ions were prepared using the solid-state reaction method. The effects of Dy3+ ion doping on the crystal structure, micromorphology, electromagnetic parameters, and microwave absorption properties of the Ca1?xDyxMnO3 samples were analyzed. The experimental results indicate that as the doping concentration of Dy3+ ions increases, the particle size of the samples decreases, the real part of the permittivity increases, and the microwave absorption properties are enhanced. When the doping concentration of Dy3+ ions is 5%, the samples exhibit the best microwave absorption performance, with a maximum effective absorption bandwidth of 2.2 GHz and a minimum reflection loss of ?39.72 dB within the frequency range of 2~18 GHz. This paper effectively improves microwave absorption performance through the doping of non-equivalent Dy3+ ions, broadening the potential applications of CaMnO3 materials in the field of microwave absorption.

References

[1]  张淑琴, 张彭. 电磁辐射的危害与防护[J]. 工业安全与环保, 2008, 34(3): 30-32.
[2]  何小锋. 现代雷达隐身技术发展[J]. 现代导航, 2015(3): 306-309.
[3]  师俊朋, 胡国平, 王金龙, 等. 雷达隐身技术分析及进展[J]. 飞航导弹, 2014(2): 81-84.
[4]  徐剑盛, 周万城, 罗发, 等. 雷达波隐身技术及雷达吸波材料研究进展[J]. 材料导报, 2014, 28(9): 46-49.
[5]  李旺昌, 周祥, 应耀, 等. 雷达吸波隐身材料的进展及发展趋势[J]. 材料导报, 2015(2): 353-357.
[6]  班国东, 刘朝辉, 叶圣天, 等. 新型涂覆型雷达吸波材料的研究进展[J]. 表面技术, 2016, 45(6): 140-146.
[7]  Zeng, X., Cheng, X., Yu, R. and Stucky, G.D. (2020) Electromagnetic Microwave Absorption Theory and Recent Achievements in Microwave Absorbers. Carbon, 168, 606-623.
https://doi.org/10.1016/j.carbon.2020.07.028
[8]  高海涛, 王建江, 赵志宁, 等. 铁氧体吸波材料吸波性能影响因素研究进展[J]. 磁性材料与器件, 2014(1): 68-73.
[9]  Thakur, P., Chahar, D., Taneja, S., Bhalla, N. and Thakur, A. (2020) A Review on MnZn Ferrites: Synthesis, Characterization and Applications. Ceramics International, 46, 15740-15763.
https://doi.org/10.1016/j.ceramint.2020.03.287
[10]  Zhang, S., Meng, C., Zhang, L., Yuan, S., Luo, H., Liu, S., et al. (2020) Effect of Zn and Ir Doping on Microwave Absorption of SrFe122xZnxIrxO19. Journal of Magnetism and Magnetic Materials, 513, Article ID: 167076.
https://doi.org/10.1016/j.jmmm.2020.167076
[11]  Chen, N., Mu, G., Pan, X., Gan, K. and Gu, M. (2007) Microwave Absorption Properties of SrFe12O19/ZnFe2O4 Composite Powders. Materials Science and Engineering: B, 139, 256-260.
https://doi.org/10.1016/j.mseb.2007.02.002
[12]  Dong, S., Lin, C. and Meng, X. (2019) One-Pot Synthesis and Microwave Absorbing Properties of Ultrathin SrFe12O19 Nanosheets. Journal of Alloys and Compounds, 783, 779-784.
https://doi.org/10.1016/j.jallcom.2018.12.265
[13]  Ren, F., Yu, H., Wang, L., Saleem, M., Tian, Z. and Ren, P. (2014) Current Progress on the Modification of Carbon Nanotubes and Their Application in Electromagnetic Wave Absorption. RSC Advances, 4, Article No. 14419.
https://doi.org/10.1039/c3ra46989a
[14]  Qing, Y., Zhou, W., Luo, F. and Zhu, D. (2009) Microwave-Absorbing and Mechanical Properties of Carbonyl-Iron/Epoxy-Silicone Resin Coatings. Journal of Magnetism and Magnetic Materials, 321, 25-28.
https://doi.org/10.1016/j.jmmm.2008.07.011
[15]  Weng, G., Li, J., Alhabeb, M., Karpovich, C., Wang, H., Lipton, J., et al. (2018) Layer-by-Layer Assembly of Cross‐Functional Semi-Transparent MXene-Carbon Nanotubes Composite Films for Next‐Generation Electromagnetic Interference Shielding. Advanced Functional Materials, 28, Article ID: 1803360.
https://doi.org/10.1002/adfm.201803360
[16]  Huang, Z., Chen, H., Huang, Y., Ge, Z., Zhou, Y., Yang, Y., et al. (2017) Ultra‐Broadband Wide‐Angle Terahertz Absorption Properties of 3D Graphene Foam. Advanced Functional Materials, 28, Article ID: 1704363.
https://doi.org/10.1002/adfm.201704363
[17]  Qiang, R., Du, Y., Zhao, H., Wang, Y., Tian, C., Li, Z., et al. (2015) Metal Organic Framework-Derived Fe/C Nanocubes toward Efficient Microwave Absorption. Journal of Materials Chemistry A, 3, 13426-13434.
https://doi.org/10.1039/c5ta01457c
[18]  Balci, O., Polat, E.O., Kakenov, N. and Kocabas, C. (2015) Graphene-Enabled Electrically Switchable Radar-Absorbing Surfaces. Nature Communications, 6, Article No. 10000.
https://doi.org/10.1038/ncomms7628
[19]  Li, X., Zhang, L. and Yin, X. (2012) Effect of Chemical Vapor Infiltration of Si3N4 on the Mechanical and Dielectric Properties of Porous Si3N4 Ceramic Fabricated by a Technique Combining 3-D Printing and Pressureless Sintering. Scripta Materialia, 67, 380-383.
https://doi.org/10.1016/j.scriptamat.2012.05.030
[20]  Saib, A., Bednarz, L., Daussin, R., Bailly, C., Lou, X.D., Thomassin, J., et al. (2006) Carbon Nanotube Composites for Broadband Microwave Absorbing Materials. IEEE Transactions on Microwave Theory and Techniques, 54, 2745-2754.
https://doi.org/10.1109/tmtt.2006.874889
[21]  Jia, Z., Gao, Z., Feng, A., Zhang, Y., Zhang, C., Nie, G., et al. (2019) Laminated Microwave Absorbers of A-Site Cation Deficiency Perovskite La0.8FeO3 Doped at Hybrid RGO Carbon. Composites Part B: Engineering, 176, Article ID: 107246.
https://doi.org/10.1016/j.compositesb.2019.107246
[22]  Wang, B., Cao, Q. and Zhang, S. (2014) Effects of the Incorporation of Fe on the Electromagnetic and Microwave Absorption Performance of La0.7Sr0.3MnOδ. Materials Science in Semiconductor Processing, 19, 101-106.
https://doi.org/10.1016/j.mssp.2013.12.010
[23]  Wu, Q., Liu, J., Wang, G., Chen, S. and Yu, S. (2016) A Surfactant-Free Route to Synthesize Ba X Sr1xTiO3 Nanoparticles at Room Temperature, Their Dielectric and Microwave Absorption Properties. Science China Materials, 59, 609-617.
https://doi.org/10.1007/s40843-016-5072-5
[24]  Hu, K., Wang, S., Zhang, M., Huang, F., Kong, X. and Liu, Q. (2019) Enhanced Microwave Absorption Properties of La Doping BaSnO3 Ceramic Powder. Journal of Materials Science: Materials in Electronics, 30, 15420-15428.
https://doi.org/10.1007/s10854-019-01917-6
[25]  Wang, Y., Sui, Y., Fan, H., Wang, X., Su, Y., Su, W., et al. (2009) High Temperature Thermoelectric Response of Electron-Doped CaMnO3. Chemistry of Materials, 21, 4653-4660.
https://doi.org/10.1021/cm901766y
[26]  Zhang, F.P., Zhang, X., Lu, Q.M., Zhang, J.X. and Liu, Y.Q. (2011) Electronic Structure and Thermal Properties of Doped CaMnO3 Systems. Journal of Alloys and Compounds, 509, 4171-4175.
https://doi.org/10.1016/j.jallcom.2011.01.032
[27]  Bocher, L., Aguirre, M.H., Logvinovich, D., Shkabko, A., Robert, R., Trottmann, M., et al. (2008) CaMn1−xNbxO3 (x ≤ 0.08) Perovskite-Type Phases as Promising New High-Temperature n-Type Thermoelectric Materials. Inorganic Chemistry, 47, 8077-8085.
https://doi.org/10.1021/ic800463s
[28]  Zhan, B., Lan, J., Liu, Y., Lin, Y., Shen, Y. and Nan, C. (2014) High Temperature Thermoelectric Properties of Dy-Doped CaMnO3 Ceramics. Journal of Materials Science & Technology, 30, 821-825.
https://doi.org/10.1016/j.jmst.2014.01.002
[29]  Murano, Y., Matsukawa, M., Ohuchi, S., Kobayashi, S., Nimori, S., Suryanarayanan, R., et al. (2011) Effect of Pressure on the Magnetic, Transport, and Thermal-Transport Properties of the Electron-Doped Manganite CaMn1−xSbxO3. Physical Review B, 83, Article ID: 054437.
https://doi.org/10.1103/physrevb.83.054437
[30]  Zhang, F.-P., Zhang, J.-W., Zhang, J.-X., Yang, X.-Y., Lu, Q.-M. and Zhang, X. (2017) Effects of Sr Doping on Electronic and Thermoelectrical Transport Properties of CaMnO3 Based Oxide. Acta Physica Sinica, 66, Article ID: 247202.
https://doi.org/10.7498/aps.66.247202
[31]  Zhao, S., Zheng, J., Jiang, F., Song, Y., Sun, M. and Song, X. (2015) Co-Precipitation Synthesis and Microwave Absorption Properties of CaMnO3 Doped by La and Co. Journal of Materials Science: Materials in Electronics, 26, 8603-8608.
https://doi.org/10.1007/s10854-015-3534-x
[32]  Liu, Y., Zhu, D., Qing, Y., Zhou, W. and Luo, F. (2021) Effects of La3+ or Ti4+ Doping on Dielectric and Microwave Absorption Performance of CaMnO3 in the 8.2-18 Ghz. Journal of Materials Science: Materials in Electronics, 32, 10329-10338.
https://doi.org/10.1007/s10854-021-05688-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133