Continuous groundwater quality monitoring poses significant challenges affecting the environment and public health. Groundwater in Abidjan, specifically from the Continental Terminal (CT), is the primary supply source. Therefore, ensuring safe drinking water and environmental protection requires a thorough evaluation and surveillance of this resource. Our present research evaluates the quality of the CT groundwater in Abidjan using the water quality index (WQI) based on the analytical hierarchy process (AHP). This study also explores the application of machine learning predictions as a time-efficient and cost-effective approach for groundwater resource management. Therefore, three Machine Learning regression algorithms (Ridge, Lasso, and Gradient Boosting (GB)) were executed and compared. The AHP-based WQI results classified 98.98% of samples as “good” water quality, while 0.68% and 0.34% of samples were respectively categorized as “excellent” and “poor” water. Afterward, the prediction performance evaluation highlighted that the GB outperformed the other models with the highest accuracy and consistency (MSE = 0.097, RMSE = 0.300, r = 0.766, rs = 0.757, and τ = 0.804). In contrast, the Lasso model recorded the lowest prediction accuracy, with an MSE of 148.921, an RMSE of 6.828, and consistency parameters of r = 0.397, rs = 0.079, and τ = 0.082. Gradient Boosting regression effectively learns nonlinear events and interactions by iteratively fitting new models to errors of previous models, enabling a more realistic groundwater quality prediction. This study provides a novel perspective for improving groundwater quality management in Abidjan, promoting real-time tracking and risk mitigations.
References
[1]
Kazakis, N., Mattas, C., Pavlou, A., Patrikaki, O. and Voudouris, K. (2017) Multivariate Statistical Analysis for the Assessment of Groundwater Quality under Different Hydrogeological Regimes. Environmental Earth Sciences, 76, Article No. 349. https://doi.org/10.1007/s12665-017-6665-y
[2]
Direction de l’hydraulique humaine (DHH) (2001) Hydraulique Humaine en Côte d’Ivoire. Ministère des Infrastructures Economiques, Direction de l’Hydraulique Humaine, 66.
[3]
SODECI (2005) Campagne de relevé piézométrique réalisée au niveau du District d’Abidjan. Rapport d’activité, 13 p.
[4]
Soro, N., Ouattara, L., Dongo, K., Kouadio, E., Ahoussi, E., Soro, G., et al. (2011) Déchets municipaux dans le District d’Abidjan en Côte d’Ivoire: Sources potentielles de pollution des eaux souterraines. International Journal of Biological and Chemical Sciences, 4, 2203-2219. https://doi.org/10.4314/ijbcs.v4i6.64952
[5]
Deh, S., Kouame, K., Saley, M., Tanoh, K., Anani, E., Signo, K., et al. (2012) Evaluation de la vulnérabilité spécifique aux nitrates (NO3) des eaux souterraines du District d’Abidjan (Sud de la Côte d’Ivoire). International Journal of Biological and Chemical Sciences, 6, 1390-1408. https://doi.org/10.4314/ijbcs.v6i3.40
[6]
Jourda, J.P., Kouamé, K.J., Saley, M.B., Kouadio, B.H., Oga, Y.S. and Deh, S. (2006) Contamination of the Abidjan Aquifer by Sewage: An Assessment of Extent and Strategies for Protection. In: Xu, Y.X. and Usher, B., Eds., Groundwater Pollution in Africa, Taylor & Francis/Balkema, 291-300.
[7]
Qin, Q.S., Huang, G.H. and Chakma, A. (2008) Modeling Groundwater Contamination under Uncertainty: A Factorial-Design-Based Stochastic Approach. Journal of Environmental Informatics, 11, 11-20. https://doi.org/10.3808/jei.200800106
[8]
Ahn, H. and Chon, H. (1999) Assessment of Groundwater Contamination Using Geographic Information Systems. Environmental Geochemistry and Health, 21, 273-289. https://doi.org/10.1023/a:1006697512090
[9]
Massmann, J., Freeze, R.A., Smith, L., Sperling, T. and James, B. (1991) Hydrogeological Decision Analysis: 2. Applications to Ground‐Water Contamination. Groundwater, 29, 536-548. https://doi.org/10.1111/j.1745-6584.1991.tb00545.x
[10]
Khan, H., Khan, A. A. and Hall, S. (2005) The Canadian Water Quality Index: A Tool for Water Resources Management. MTERM International Conference, Vol. 8.
[11]
Ma, Z., Li, H., Ye, Z., Wen, J., Hu, Y. and Liu, Y. (2020) Application of Modified Water Quality Index (WQI) in the Assessment of Coastal Water Quality in Main Aquaculture Areas of Dalian, China. Marine Pollution Bulletin, 157, Article ID: 111285. https://doi.org/10.1016/j.marpolbul.2020.111285
[12]
Uddin, M.G., Rahman, A., Nash, S., Diganta, M.T.M., Sajib, A.M., Moniruzzaman, M., et al. (2023) Marine Waters Assessment Using Improved Water Quality Model Incorporating Machine Learning Approaches. Journal of Environmental Management, 344, Article ID: 118368. https://doi.org/10.1016/j.jenvman.2023.118368
[13]
Ramesh, S., Sukumaran, N., Murugesan, A.G. and Rajan, M.P. (2010) An Innovative Approach of Drinking Water Quality Index—A Case Study from Southern Tamil Nadu, India. Ecological Indicators, 10, 857-868. https://doi.org/10.1016/j.ecolind.2010.01.007
[14]
Poonam, T., Tanushree, B. and Sukalyan, C. (2013) Water Quality Indices-Important Tools for Water Quality Assessment: A Review. International Journal of Advances in chemistry, 1, 15-28.
[15]
Rupal, M., Tanushree, B. and Sukalyan, C. (2012) Quality Characterization of Groundwater Using Water Quality Index in Surat City, Gujarat, India. International Research Journal of Environment Sciences, 1, 14-23.
[16]
Hui, T., Du, J., Sun, Q., Liu, Q., Kang, Z. and Jin, H. (2020) Using the Water Quality Index (WQI), and the Synthetic Pollution Index (SPI) to Evaluate the Groundwater Quality for Drinking Purpose in Hailun, China. Sains Malaysiana, 49, 2383-2401. https://doi.org/10.17576/jsm-2020-4910-05
[17]
Mamun, M. and An, K. (2021) Application of Multivariate Statistical Techniques and Water Quality Index for the Assessment of Water Quality and Apportionment of Pollution Sources in the Yeongsan River, South Korea. International Journal of Environmental Research and Public Health, 18, Article No. 8268. https://doi.org/10.3390/ijerph18168268
[18]
Chidiac, S., El Najjar, P., Ouaini, N., El Rayess, Y. and El Azzi, D. (2023) A Comprehensive Review of Water Quality Indices (WQIS): History, Models, Attempts and Perspectives. Reviews in Environmental Science and Bio/Technology, 22, 349-395. https://doi.org/10.1007/s11157-023-09650-7
[19]
Uddin, M.G., Nash, S. and Olbert, A.I. (2021) A Review of Water Quality Index Models and Their Use for Assessing Surface Water Quality. Ecological Indicators, 122, Article ID: 107218. https://doi.org/10.1016/j.ecolind.2020.107218
[20]
Rajkumar, H., Naik, P.K. and Rishi, M.S. (2022) A Comprehensive Water Quality Index Based on Analytical Hierarchy Process. Ecological Indicators, 145, Article ID: 109582. https://doi.org/10.1016/j.ecolind.2022.109582
[21]
Amiri, V., Rezaei, M. and Sohrabi, N. (2014) Groundwater Quality Assessment Using Entropy Weighted Water Quality Index (EWQI) in Lenjanat, Iran. Environmental Earth Sciences, 72, 3479-3490. https://doi.org/10.1007/s12665-014-3255-0
[22]
Gorgij, A.D., Kisi, O., Moghaddam, A.A. and Taghipour, A. (2017) Groundwater Quality Ranking for Drinking Purposes, Using the Entropy Method and the Spatial Autocorrelation Index. Environmental Earth Sciences, 76, Article No. 269. https://doi.org/10.1007/s12665-017-6589-6
[23]
Islam Khan, M.S., Islam, N., Uddin, J., Islam, S. and Nasir, M.K. (2022) Water Quality Prediction and Classification Based on Principal Component Regression and Gradient Boosting Classifier Approach. Journal of King Saud University—Computer and Information Sciences, 34, 4773-4781. https://doi.org/10.1016/j.jksuci.2021.06.003
[24]
Singha, S., Pasupuleti, S., Singha, S.S., Singh, R. and Kumar, S. (2021) Prediction of Groundwater Quality Using Efficient Machine Learning Technique. Chemosphere, 276, Article ID: 130265. https://doi.org/10.1016/j.chemosphere.2021.130265
[25]
Singha, S., Pasupuleti, S., Durbha, K.S., Singha, S.S., Singh, R. and Venkatesh, A.S. (2019) An Analytical Hierarchy Process-Based Geospatial Modeling for Delineation of Potential Anthropogenic Contamination Zones of Groundwater from Arang Block of Raipur District, Chhattisgarh, Central India. Environmental Earth Sciences, 78, Article No. 694. https://doi.org/10.1007/s12665-019-8724-z
[26]
Elbeltagi, A., Pande, C.B., Kouadri, S. and Islam, A.R.M.T. (2021) Applications of Various Data-Driven Models for the Prediction of Groundwater Quality Index in the Akot Basin, Maharashtra, India. Environmental Science and Pollution Research, 29, 17591-17605. https://doi.org/10.1007/s11356-021-17064-7
[27]
Haggerty, R., Sun, J., Yu, H. and Li, Y. (2023) Application of Machine Learning in Groundwater Quality Modeling—A Comprehensive Review. Water Research, 233, Article ID: 119745. https://doi.org/10.1016/j.watres.2023.119745
[28]
Xiao, S. (2024) Machine Learning Methods for Providing Groundwater Management Insights in Semi-Arid Alluvial Aquifers. Ph.D. Thesis, UNSW.
[29]
Mohd Zebaral Hoque, J., Ab. Aziz, N.A., Alelyani, S., Mohana, M. and Hosain, M. (2022) Improving Water Quality Index Prediction Using Regression Learning Models. International Journal of Environmental Research and Public Health, 19, Article No. 13702. https://doi.org/10.3390/ijerph192013702
[30]
Granata, F., Papirio, S., Esposito, G., Gargano, R. and De Marinis, G. (2017) Machine Learning Algorithms for the Forecasting of Wastewater Quality Indicators. Water, 9, Article No. 105. https://doi.org/10.3390/w9020105
[31]
Azma, A., Tavakol Sadrabadi, M., Liu, Y., Azma, M., Zhang, D., Cao, Z., et al. (2022) Boosting Ensembles for Estimation of Discharge Coefficient and through Flow Discharge in Broad-Crested Gabion Weirs. Applied Water Science, 13, Article No. 45. https://doi.org/10.1007/s13201-022-01841-x
[32]
Abdi, J. and Mazloom, G. (2022) Machine Learning Approaches for Predicting Arsenic Adsorption from Water Using Porous Metal-Organic Frameworks. Scientific Reports, 12, Article No. 16458. https://doi.org/10.1038/s41598-022-20762-y
[33]
Chen, B., Chen, Z., Song, C. and Song, Y. (2024) Integrated Forecasting Method of Medium-and Long-Term Runoff by Ridge Regression Based on Optimal Sub-Model Selection. Water Supply, 24, 799-811. https://doi.org/10.2166/ws.2024.033
[34]
Falah, F., Rahmati, O., Rostami, M., Ahmadisharaf, E., Daliakopoulos, I.N. and Pourghasemi, H.R. (2019) Artificial Neural Networks for Flood Susceptibility Mapping in Data-Scarce Urban Areas. In: Pourghasemi, H.R. and Gokceoglu, C., Eds., Spatial Modeling in GIS and R for Earth and Environmental Sciences, Elsevier, 323-336. https://doi.org/10.1016/b978-0-12-815226-3.00014-4
[35]
Cao, H., Xie, X., Wang, Y. and Liu, H. (2022) Predicting Geogenic Groundwater Fluoride Contamination throughout China. Journal of Environmental Sciences, 115, 140-148. https://doi.org/10.1016/j.jes.2021.07.005
[36]
Foddis, M.L., Montisci, A., Uras, G., Matzeu, A., Seddaiu, G. and Carletti, A. (2012) Prediction of Nitrate Concentration in Groundwater Using an Artificial Neural Net-work (ANN) Approach.
[37]
Abba, S.I., Hadi, S.J., Sammen, S.S., Salih, S.Q., Abdulkadir, R.A., Pham, Q.B., et al. (2020) Evolutionary Computational Intelligence Algorithm Coupled with Self-Tuning Predictive Model for Water Quality Index Determination. Journal of Hydrology, 587, Article ID: 124974. https://doi.org/10.1016/j.jhydrol.2020.124974
[38]
Ahmed, U., Mumtaz, R., Anwar, H., Shah, A.A., Irfan, R. and García-Nieto, J. (2019) Efficient Water Quality Prediction Using Supervised Machine Learning. Water, 11, Article No. 2210. https://doi.org/10.3390/w11112210
[39]
Yilma, M., Kiflie, Z., Windsperger, A. and Gessese, N. (2018) Application of Artificial Neural Network in Water Quality Index Prediction: A Case Study in Little Akaki River, Addis Ababa, Ethiopia. Modeling Earth Systems and Environment, 4, 175-187. https://doi.org/10.1007/s40808-018-0437-x
[40]
Gupta, R., Singh, A.N. and Singhal, A. (2019) Application of ANN for Water Quality Index. International Journal of Machine Learning and Computing, 9, 688-693. https://doi.org/10.18178/ijmlc.2019.9.5.859
[41]
Leong, W.C., Bahadori, A., Zhang, J. and Ahmad, Z. (2019) Prediction of Water Quality Index (WQI) Using Support Vector Machine (SVM) and Least Square-Support Vector Machine (LS-SVM). International Journal of River Basin Management, 19, 149-156. https://doi.org/10.1080/15715124.2019.1628030
[42]
Jourda, J.P. (1987) Contribution à l’étude géologique et hydrogéologique de la région du Grand Abidjan (Côte d’Ivoire). Doctoral Dissertation, Université Scientifique et Médicale de Grenoble.
[43]
Adiaffi, B. (2008) Apport de la Géochimie Isotopique, de l’Hydrochimie et de la Télédétection a la Connaissance des Aquifères de la Zone de Contact “Socle-Bassin Sédimentaire” du Sud-Est de la Côte d’Ivoire. Doctoral Dissertation, Université Paris Sud-Paris XI.
[44]
Loroux, B.F.E. (1978) Contribution à l’étude hydrogéologique du bassin sédimen-taire côtier de Côte d’Ivoire. These de Doctorat, Université de Bordeaux I.
[45]
Kouamé, A.A., Jaboyedoff, M., Goula Bi Tie, A., Derron, M., Kouamé, K.J. and Meier, C. (2019) Assessment of the Potential Pollution of the Abidjan Unconfined Aquifer by Hydrocarbons. Geosciences, 9, Article No. 60. https://doi.org/10.3390/geosciences9020060
[46]
Othmer Jr, E.F. and Berger, B.J. (2002) Future Monitoring Strategies with Lessons Learned on Collecting Representative Samples. Storm Water Program. Office of Water Programs Sacramento State.
[47]
Saaty, R.W. (1987) The Analytic Hierarchy Process—What It Is and How It Is Used. Mathematical Modelling, 9, 161-176. https://doi.org/10.1016/0270-0255(87)90473-8
[48]
Tallar, R.Y. and Suen, J. (2015) Aquaculture Water Quality Index: A Low-Cost Index to Accelerate Aquaculture Development in Indonesia. Aquaculture International, 24, 295-312. https://doi.org/10.1007/s10499-015-9926-3
[49]
Singh, L.K., Jha, M.K. and Chowdary, V.M. (2018) Assessing the Accuracy of GIS-Based Multi-Criteria Decision Analysis Approaches for Mapping Groundwater Potential. Ecological Indicators, 91, 24-37. https://doi.org/10.1016/j.ecolind.2018.03.070
[50]
Kumar, P., Thakur, P.K., Bansod, B.K. and Debnath, S.K. (2017) Multi-Criteria Evaluation of Hydro-Geological and Anthropogenic Parameters for the Groundwater Vulnerability Assessment. Environmental Monitoring and Assessment, 189, Article No. 564. https://doi.org/10.1007/s10661-017-6267-x
[51]
Ismaïl, H., Zeaiter, Z., Farkh, S. and Abou-Hamdan, H. (2015) Comparative Analysis of Results Obtained from 3 Indexes (SEQ-Eau IBD IPS) Used to Assess Water Quality of the Berdawni, A Mediterranean Stream at the Beqaa Region-Lebanon. International Journal of Scientific & Technology Research, 4, 34-40.
[52]
World Health Organization (2017) Guidelines for Drinking Water Quality. 4th Edition.
[53]
Sahu, P. and Sikdar, P.K. (2007) Hydrochemical Framework of the Aquifer in and around East Kolkata Wetlands, West Bengal, India. Environmental Geology, 55, 823-835. https://doi.org/10.1007/s00254-007-1034-x
[54]
Alkindi, K.M., Mukherjee, K., Pandey, M., Arora, A., Janizadeh, S., Pham, Q.B., et al. (2021) Prediction of Groundwater Nitrate Concentration in a Semiarid Region Using Hybrid Bayesian Artificial Intelligence Approaches. Environmental Science and Pollution Research, 29, 20421-20436. https://doi.org/10.1007/s11356-021-17224-9
[55]
Hoerl, A.E. and Kennard, R.W. (1970) Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12, 55-67. https://doi.org/10.1080/00401706.1970.10488634
[56]
Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
[57]
Wang, S., Ji, B., Zhao, J., Liu, W. and Xu, T. (2018) Predicting Ship Fuel Consumption Based on LASSO Regression. Transportation Research Part D: Transport and Environment, 65, 817-824. https://doi.org/10.1016/j.trd.2017.09.014
[58]
Shams, M.Y., Elshewey, A.M., El-kenawy, E.M., Ibrahim, A., Talaat, F.M. and Tarek, Z. (2023) Water Quality Prediction Using Machine Learning Models Based on Grid Search Method. Multimedia Tools and Applications, 83, 35307-35334. https://doi.org/10.1007/s11042-023-16737-4
[59]
Li, X., Li, W. and Xu, Y. (2018) Human Age Prediction Based on DNA Methylation Using a Gradient Boosting Regressor. Genes, 9, Article No. 424. https://doi.org/10.3390/genes9090424
[60]
Friedman, J.H. (2001) Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29, 1189-1232. https://doi.org/10.1214/aos/1013203451
[61]
Chung, C.F. and Fabbri, A.G. (2003) Validation of Spatial Prediction Models for Landslide Hazard Mapping. Natural Hazards, 30, 451-472. https://doi.org/10.1023/b:nhaz.0000007172.62651.2b
[62]
Jha, M.K. and Sahoo, S. (2014) Efficacy of Neural Network and Genetic Algorithm Techniques in Simulating Spatio‐Temporal Fluctuations of Groundwater. Hydrological Processes, 29, 671-691. https://doi.org/10.1002/hyp.10166
[63]
Ratner, B. (2009) The Correlation Coefficient: Its Values Range between +1/−1, or Do They? Journal of Targeting, Measurement and Analysis for Marketing, 17, 139-142. https://doi.org/10.1057/jt.2009.5
[64]
Complete Dissertation by Statistics Solutions. Correlation (Pearson, Kendall, Spearman). https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/correlation-pearson-kendall-spearman/
[65]
Roose, E., Chéroux, M., Humbel, F.X. and Perraud, A. (1966) Les sols du bassin sédimentaire de Côte d’Ivoire. Cahiers ORSTOM, 4, 51-92.
[66]
Zhang, C., Li, X., Ma, J., Wang, Z. and Hou, X. (2022) Stable Isotope and Hydrochemical Evolution of Shallow Groundwater in Mining Area of the Changzhi Basin, Northern China. Environmental Earth Sciences, 81, Article No. 294. https://doi.org/10.1007/s12665-022-10416-7
[67]
Riess, M. (2015) Assainissement et Gestion Intégrée du Bassin Versant du Gourou (Côte d’Ivoire). These de Doctorat, École Nationale du Génie et de l’Eau et de l’Environnement de Strasbourg.
[68]
Oga, Y., Lasm, T., Massault, M., Baka, D., Ake, G., Marlin, C., et al. (2011) Caractérisation et suivi isotopique des eaux de la nappe semi-captive du Maestrichtien de la Côte d’Ivoire. International Journal of Biological and Chemical Sciences, 5, 991-1004. https://doi.org/10.4314/ijbcs.v5i3.72195
[69]
Kamtchueng, B.T., Fantong, W.Y., Ueda, A., Tiodjio, E.R., Anazawa, K., Wirmvem, M.J., et al. (2014) Assessment of Shallow Groundwater in Lake Nyos Catchment (Cameroon, Central-Africa): Implications for Hydrogeochemical Controls and Uses. Environmental Earth Sciences, 72, 3663-3678. https://doi.org/10.1007/s12665-014-3278-6
[70]
Kadam, A.K., Wagh, V.M., Muley, A.A., Umrikar, B.N. and Sankhua, R.N. (2019) Prediction of Water Quality Index Using Artificial Neural Network and Multiple Linear Regression Modelling Approach in Shivganga River Basin, India. Modeling Earth Systems and Environment, 5, 951-962. https://doi.org/10.1007/s40808-019-00581-3
[71]
Zhang, Y., Dai, Y., Wang, Y., Huang, X., Xiao, Y. and Pei, Q. (2021) Hydrochemistry, Quality and Potential Health Risk Appraisal of Nitrate Enriched Groundwater in the Nanchong Area, Southwestern China. Science of The Total Environment, 784, Article ID: 147186. https://doi.org/10.1016/j.scitotenv.2021.147186
[72]
Naseem, S., Rafique, T., Bashir, E., Bhanger, M.I., Laghari, A. and Usmani, T.H. (2010) Lithological Influences on Occurrence of High-Fluoride Groundwater in Nagar Parkar Area, Thar Desert, Pakistan. Chemosphere, 78, 1313-1321. https://doi.org/10.1016/j.chemosphere.2010.01.010
[73]
Kouamé, A. (2018) Apport de la modélisation hydrogéologique dans l’étude des risques de contamination de la nappe d’Abidjan par les hydrocarbures: Cas du benzène dans le District d’Abidjan (Côte d’Ivoire). Doctoral Dissertation, Université de Lausanne, Faculté des géosciences et de l’environnement.
[74]
Douagui, A.G., Kouamé, I.K., Mangoua, J.M.O., Kouassi, A.K. and Savané, I. (2019) Using Water Quality Index for Assessing of Physicochemical Quality of Quaternary Groundwater in the Southern Part of Abidjan District (Côte D’ivoire). Journal of Water Resource and Protection, 11, 1278-1291. https://doi.org/10.4236/jwarp.2019.1110074
[75]
Tiwari, A., Singh, P. and Mahato, M. (2014) GIS-Based Evaluation of Water Quality Index of Groundwater Resources in West Bokaro Coalfield, India. Current World Environment, 9, 843-850. https://doi.org/10.12944/cwe.9.3.35
[76]
Feng, Y., Fanghui, Y. and Li, C. (2019) Improved Entropy Weighting Model in Water Quality Evaluation. Water Resources Management, 33, 2049-2056. https://doi.org/10.1007/s11269-019-02227-6
[77]
Batabyal, A.K. and Chakraborty, S. (2015) Hydrogeochemistry and Water Quality Index in the Assessment of Groundwater Quality for Drinking Uses. Water Environment Research, 87, 607-617. https://doi.org/10.2175/106143015x14212658613956
[78]
Alshehri, F. and Rahman, A. (2023) Coupling Machine and Deep Learning with Explainable Artificial Intelligence for Improving Prediction of Groundwater Quality and Decision-Making in Arid Region, Saudi Arabia. Water, 15, Article No. 2298. https://doi.org/10.3390/w15122298
[79]
Feng, F., Ghorbani, H. and Radwan, A.E. (2024) Predicting Groundwater Level Using Traditional and Deep Machine Learning Algorithms. Frontiers in Environmental Science, 12, Article ID: 1291327. https://doi.org/10.3389/fenvs.2024.1291327
[80]
Morovvati Zarajabad, A., Hadi, M., Nabizadeh Nodehi, R., Moradi, M., Rezvani Ghalhari, M., Zeraatkar, A., et al. (2024) Providing Predictive Models for Quality Parameters of Groundwater Resources in Arid Areas of Central Iran: A Case Study of Kashan Plain. Heliyon, 10, e31493. https://doi.org/10.1016/j.heliyon.2024.e31493
[81]
Jibrin, A.M., Al-Suwaiyan, M., Aldrees, A., Dan’azumi, S., Usman, J., Abba, S.I., et al. (2024) Machine Learning Predictive Insight of Water Pollution and Groundwater Quality in the Eastern Province of Saudi Arabia. Scientific Reports, 14, Article No. 20031. https://doi.org/10.1038/s41598-024-70610-4
[82]
Chen, T. and Guestrin, C. (2016) XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 785-794. https://doi.org/10.1145/2939672.2939785
[83]
Sharafati, A., Asadollah, S.B.H.S. and Neshat, A. (2020) A New Artificial Intelligence Strategy for Predicting the Groundwater Level over the Rafsanjan Aquifer in Iran. Journal of Hydrology, 591, Article ID: 125468. https://doi.org/10.1016/j.jhydrol.2020.125468
[84]
Gibbs, R.J. (1970) Mechanisms Controlling World Water Chemistry. Science, 170, 1088-1090. https://doi.org/10.1126/science.170.3962.1088
[85]
Li, C., Gao, Z., Chen, H., Wang, J., Liu, J., Li, C., et al. (2021) Hydrochemical Analysis and Quality Assessment of Groundwater in Southeast North China Plain Using Hydrochemical, Entropy-Weight Water Quality Index, and GIS Techniques. Environmental Earth Sciences, 80, Article No. 523. https://doi.org/10.1007/s12665-021-09823-z