全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TGF-β与胃癌形成及改变机制关系研究进展
Research Progress on the Relationship between TGF-β and the Formation and Alteration Mechanism of Gastric Cancer

DOI: 10.12677/acrpo.2024.134004, PP. 19-24

Keywords: 转化生长因子-β,胃癌,形成改变机制
TGF-β
, Gastric Cancer, Formation Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

胃癌是我国目前较常见恶性肿瘤之一,最近科学家研究发现其发病原因与肿瘤免疫逃逸有关,其中目前研究较为深入的是肿瘤微环境介导的免疫逃逸。转化生长因子-β (TGF-β)属于调节细胞生长分化的转化因子家族细胞因子之一,它与许多恶性肿瘤生长转移有关,其中转化生长因子-β与胃癌的关系较为密切。本文主要对TGF-β以及胃癌形成改变机制研究进展作一简单的介绍。
Gastric cancer is one of the most common malignant tumors in our country. Recent scientific studies have found that its etiology is related to tumor immune evasion, with a particular focus on immune evasion mediated by the tumor microenvironment. Transforming growth factor beta (TGF-β) is one of the cytokines belonging to the family of transforming factors that regulate cell growth and differentiation. It is associated with the growth and metastasis of various malignant tumors, with a particularly close relationship to gastric cancer. This article provides a brief overview of the research progress on TGF-β and the mechanisms by which it influences the development of gastric cancer.

References

[1]  Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D. (2011) Global Cancer Statistics. CA: A Cancer Journal for Clinicians, 61, 69-90.
https://doi.org/10.3322/caac.20107
[2]  Shin, H.-R., Carlos, M.C. and Varghese, C. (2012) Cancer Control in the Asia Pacific Region: Current Status and Concerns. Japanese Journal of Clinical Oncology, 42, 867-881.
https://doi.org/10.1093/jjco/hys077
[3]  Goéré, D., Gras-Chaput, N., Aupérin, A., Flament, C., Mariette, C., Glehen, O., et al. (2014) Treatment of Gastric Peritoneal Carcinomatosis by Combining Complete Surgical Resection of Lesions and Intraperitoneal Immunotherapy Using Catumaxomab. BMC Cancer, 14, Article No. 148.
https://doi.org/10.1186/1471-2407-14-148
[4]  Kim, R., Emi, M. and Tanabe, K. (2007) Cancer Immunoediting from Immune Surveillance to Immune Escape. Immunology, 121, 1-14.
https://doi.org/10.1111/j.1365-2567.2007.02587.x
[5]  Inoue, H., Mori, M., Honda, M., Li, J., Shibuta, K., Mimori, K., et al. (1995) The Expression of Tumor-Rejection Antigen “MAGE” Genes in Human Gastric Carcinoma. Gastroenterology, 109, 1522-1525.
https://doi.org/10.1016/0016-5085(95)90639-8
[6]  Barrios-Rodiles, M., Brown, K.R., Ozdamar, B., Bose, R., Liu, Z., Donovan, R.S., et al. (2005) High-Throughput Mapping of a Dynamic Signaling Network in Mammalian Cells. Science, 307, 1621-1625.
https://doi.org/10.1126/science.1105776
[7]  Bello-DeOcampo, D. and Tindall, D. (2003) TGF-β/Smad Signaling in Prostate Cancer. Current Drug Targets, 4, 197-207.
https://doi.org/10.2174/1389450033491118
[8]  Dibrov, A., Kashour, T. and Amara, F.M. (2006) The Role of Transforming Growth Factor Beta Signaling in Messenger RNA Stability. Growth Factors, 24, 1-11.
https://doi.org/10.1080/08977190500365995
[9]  Halushka, M.K., Fan, J., Bentley, K., Hsie, L., Shen, N., Weder, A., et al. (1999) Patterns of Single-Nucleotide Polymorphisms in Candidate Genes for Blood-Pressure Homeostasis. Nature Genetics, 22, 239-247.
https://doi.org/10.1038/10297
[10]  Kluppel, M., Hoodless, P.A., Wrana, J.L. and Attisano, L. (2000) Mechanism and Function of Signaling by the TGF-β Superfamily. In: Woodgett, J., Ed., Protein Kinase Functions: Frontiers in Molecular Biology, Oxford University Press.
[11]  Maehara, Y., Kakeji, Y., Kabashima, A., Emi, Y., Watanabe, A., Akazawa, K., et al. (1999) Role of Transforming Growth Factor-β1 in Invasion and Metastasis in Gastric Carcinoma. Journal of Clinical Oncology, 17, 607.
https://doi.org/10.1200/jco.1999.17.2.607
[12]  Li, X., Yue, Z., Zhang, Y., Bai, J., Meng, X., Geng, J., et al. (2008) Elevated Serum Level and Gene Polymorphisms of TGF‐β1 in Gastric Cancer. Journal of Clinical Laboratory Analysis, 22, 164-171.
https://doi.org/10.1002/jcla.20236
[13]  Zhang, H., Qian, W., Chen, R., Sun, Z., Song, J. and Sheng, L. (2015) New Therapeutic Schedule for Prostatic Cancer-3 Cells with ET-1 RNAi and Endostar. Asian Pacific Journal of Cancer Prevention, 15, 10079-10083.
https://doi.org/10.7314/apjcp.2014.15.23.10079
[14]  Meulmeester, E. and ten Dijke, P. (2010) The Dynamic Roles of TGF‐β in Cancer. The Journal of Pathology, 223, 206-219.
https://doi.org/10.1002/path.2785
[15]  Liu, Y., Zhang, P., Li, J., Kulkarni, A.B., Perruche, S. and Chen, W. (2008) A Critical Function for TGF-β Signaling in the Development of Natural CD4+CD25+FOXP3+ Regulatory T Cells. Nature Immunology, 9, 632-640.
https://doi.org/10.1038/ni.1607
[16]  Wang, Y., Deng, B., Tang, W., Liu, T. and Shen, X. (2013) TGF-β1 Secreted by Hepatocellular Carcinoma Induces the Expression of the Foxp3 Gene and Suppresses Antitumor Immunity in the Tumor Microenvironment. Digestive Diseases and Sciences, 58, 1644-1652.
https://doi.org/10.1007/s10620-012-2550-4
[17]  Li, Z., Zhang, L., Zhang, H., Tian, G., Tian, J., Mao, X., et al. (2014) Tumor-Derived Transforming Growth Factor-β Is Critical for Tumor Progression and Evasion from Immune Surveillance. Asian Pacific Journal of Cancer Prevention, 15, 5181-5186.
https://doi.org/10.7314/apjcp.2014.15.13.5181
[18]  Ishisaki, A. and Matsuno, H. (2006) Novel Ideas of Gene Therapy for Atherosclerosis: Modulation of Cellular Signal Transduction of TGF-β Family. Current Pharmaceutical Design, 12, 877-886.
https://doi.org/10.2174/138161206776056083
[19]  Kaňková, K., Záhejský, J., Márová, I., Mužı́k, J., Kuhrová, V., Blažková, M., et al. (2011) Polymorphisms in the RAGE Gene Influence Susceptibility to Diabetes-Associated Microvascular Dermatoses in NIDDM. Journal of Diabetes and Its Complications, 15, 185-192.
https://doi.org/10.1016/S1056-8727(00)00135-5
[20]  Johnson, M.M., Houck, J. and Chen, C. (2005) Screening for Deleterious Nonsynonymous Single-Nucleotide Polymorphisms in Genes Involved in Steroid Hormone Metabolism and Response. Cancer Epidemiology, Biomarkers & Prevention, 14, 1326-1329.
https://doi.org/10.1158/1055-9965.epi-04-0815
[21]  Koushik, A., Tranah, G.J., Ma, J., Stampfer, M.J., Sesso, H.D., Fuchs, C.S., et al. (2006) P53 Arg72Pro Polymorphism and Risk of Colorectal Adenoma and Cancer. International Journal of Cancer, 119, 1863-1868.
https://doi.org/10.1002/ijc.22057
[22]  Kintscher, U. and Law, R.E. (2005) PPARγ-Mediated Insulin Sensitization: The Importance of Fat versus Muscle. American Journal of Physiology-Endocrinology and Metabolism, 288, E287-E291.
https://doi.org/10.1152/ajpendo.00440.2004
[23]  Lee, J., Bae, S., Jeong, J., Kim, S. and Kim, K. (2004) Hypoxia-Inducible Factor (HIF-1)α: Its Protein Stability and Biological Functions. Experimental & Molecular Medicine, 36, 1-12.
https://doi.org/10.1038/emm.2004.1
[24]  Li, M., Becnel, L.S., Li, W., Fisher, W.E., Chen, C., and Yao, Q. (2005) Signal Transduction in Human Pancreatic Cancer: Roles of Transforming Growth Factor Beta(TGF-β), Somatostatin Receptors, and Other Signal Intermediates. Archivum Immunologiae et Therapiae Experimentalis, 53, 381-387.
[25]  Lin, R.C.Y., Wang, X.L., Dalziel, B., Caterson, I.D. and Morris, B.J. (2003) Association of Obesity, but Not Diabetes or Hypertension, with Glucocorticoid Receptor N363S Variant. Obesity Research, 11, 802-808.
https://doi.org/10.1038/oby.2003.111
[26]  Lin, R.C.Y., Wang, X.L. and Morris, B.J. (2003) Association of Coronary Artery Disease with Glucocorticoid Receptor N363S Variant. Hypertension, 41, 404-407.
https://doi.org/10.1161/01.hyp.0000055342.40301.dc
[27]  Mayer, B.J. (1999) Protein-Protein Interactions in Signaling Cascades. Molecular Biotechnology, 13, 201-214.
https://doi.org/10.1385/mb:13:3:201
[28]  Mehra, A. and Wrana, J.L. (2002) TGF-β and the Smad Signal Transduction Pathway. Biochemistry and Cell Biology, 80, 605-622.
https://doi.org/10.1139/o02-161
[29]  Miyaki, M. and Kuroki, T. (2003) Role of Smad4 (DPC4) Inactivation in Human Cancer. Biochemical and Biophysical Research Communications, 306, 799-804.
https://doi.org/10.1016/s0006-291x(03)01066-0
[30]  Morrison, D.K. (1995) Mechanisms Regulating Raf‐1 Activity in Signal Transduction Pathways. Molecular Reproduction and Development, 42, 507-514.
https://doi.org/10.1002/mrd.1080420420
[31]  Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, D., et al. (2005) InterPro, Progress and Status in 2005. Nucleic Acids Research, 33, D201-D205.
https://doi.org/10.1093/nar/gki106
[32]  宁月, 陈凤琴, 赵雪灵, 等. miR-335-5p调控TGF-β/Smad信号通路抑制胃癌细胞EMT及侵袭和迁移[J]. 现代肿瘤医学, 2024, 32(22): 4228-4234.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133