全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大数据与人工智能时代本科计量经济学教学内容优化与创新
Optimization and Innovation of Undergraduate Econometrics Teaching Content in the Era of Big Data and Artificial Intelligence

DOI: 10.12677/ae.2024.14112210, PP. 1346-1354

Keywords: 计量经济学,教学内容改革,大数据,人工智能,跨学科整合
Econometrics
, Teaching Content Reform, Big Data, Artificial Intelligence, Interdisciplinary Integration

Full-Text   Cite this paper   Add to My Lib

Abstract:

在大数据与人工智能时代,传统的计量经济学教学面临着新的挑战与机遇。本文通过分析数据类型的变化和经济学研究范式的转变,指出了传统计量经济学教学内容的局限性。针对这些局限性,提出了优化计量经济学教学内容的五项改革建议,包括引入数据科学基础、融入机器学习方法、强化实践教学内容、平衡理论与应用以及推动模块化课程设计。这些改革旨在提升学生的数据处理能力、编程技能、批判性思维、跨学科应用能力以及团队合作能力。教学内容的优化不仅能够帮助学生适应现代经济研究的需求,还将为其未来的职业发展奠定坚实的基础。
In the era of big data and artificial intelligence, traditional econometrics teaching faces new challenges and opportunities. In this paper, by analyzing the changes in data types and the shift in economic research paradigms, the limitations of traditional econometrics teaching content have been identified. To address these limitations, five reform suggestions for optimizing econometrics teaching content have been proposed: introducing data science fundamentals, incorporating machine learning methods, enhancing practical teaching content, balancing theory and application, and promoting modular course design. These reforms aim to improve students’ data processing capabilities, programming skills, critical thinking, interdisciplinary application abilities, and teamwork skills. The optimization of teaching content will not only help students adapt to the demands of modern economic research, but also lay a solid foundation for their future career development.

References

[1]  Varian, H.R. (2014) Big Data: New Tricks for Econometrics. Journal of Economic Perspectives, 28, 3-28.
https://doi.org/10.1257/jep.28.2.3
[2]  Athey, S. and Imbens, G.W. (2019) Machine Learning Methods That Economists Should Know About. Annual Review of Economics, 11, 685-725.
https://doi.org/10.1146/annurev-economics-080217-053433
[3]  Stock, J.H. and Watson, M.W. (2017) Twenty Years of Time Series Econometrics in Ten Pictures. Journal of Economic Perspectives, 31, 59-86.
https://doi.org/10.1257/jep.31.2.59
[4]  Einav, L. and Levin, J. (2014) Economics in the Age of Big Data. Science, 346, Article ID: 1243089.
https://doi.org/10.1126/science.1243089
[5]  Agrawal, A., Gans, J. and Goldfarb, A. (2018) Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Review Press, 13-15.
[6]  Blumenstock, J., Cadamuro, G. and On, R. (2015) Predicting Poverty and Wealth from Mobile Phone Metadata. Science, 350, 1073-1076.
https://doi.org/10.1126/science.aac4420
[7]  Choi, H. and Varian, H. (2012) Predicting the Present with Google Trends. Economic Record, 88, 2-9.
https://doi.org/10.1111/j.1475-4932.2012.00809.x
[8]  Gentzkow, M., Kelly, B. and Taddy, M. (2019) Text as Data. Journal of Economic Literature, 57, 535-574.
https://doi.org/10.1257/jel.20181020
[9]  Mullainathan, S. and Spiess, J. (2017) Machine Learning: An Applied Econometric Approach. Journal of Economic Perspectives, 31, 87-106.
https://doi.org/10.1257/jep.31.2.87
[10]  Bajari, P., Chernozhukov, V., Hortaçsu, A. and Suzuki, J. (2019) The Impact of Big Data on Firm Performance: An Empirical Investigation. AEA Papers and Proceedings, 109, 33-37.
https://doi.org/10.1257/pandp.20191000
[11]  洪永淼, 汪寿阳. 大数据如何改变经济学研究范式? [J]. 管理世界, 2021, 37(10): 40-55.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133